首页 > 代码库 > sgu-206 Roads

sgu-206 Roads

题目大意:

给你一个n,m,表示一个无向图G中有n个点,m条边,m>=n-1,然后保证前n-1条边可以构成一棵生成树,然后问对于每条边应该如何修改权值使得前n-1条边构成的生成树是图的最小生成树。输出每条边修改后的值



解题思路:

首先想了很久都没有思路,然后最后怂了,看了别人的题解才发现这么神奇,这题的正解是KM

观察题目我们发现,对于前n-1条边,我们需要的就是将其改小,对于n-1条边之后的边,我们需要的是将其改大,我们知道,对于一条不在生成树上的边k2<u,v>,它如果不能改变最小生成树的话需要满足树上u->v的路径上的任意一条边k1<i,j>有w‘[k1]<=w‘[k2](此处是指修改后的),假设第i条边的变化量为change[i],那么也就是说有w[k1]-change[k1]<=w[k2]+change[k2]   =>  w[k1]-w[k2]<=change[k1]+change[k2]

我们发现如果要变化最小的话就有w[k1]-w[k2]=change[k1]+change[k2]这就是KM的条件啊

仔细观察一下这个式子,是不是很像km的w[i][j]<=gx[i]+gy[j],由于当时我们的KM是我讲的,所以我一下就明白了,那么我们可以把每一条边作为一个节点,前  n-1条边设为x节点,后面的边设为y节点,然后将两边的节点补到相同,x与y如果在原图没有边的话就连0边,如何算作有边呢?

就是对于一条不在生成树上的边k2<u,v>,在生成树上u->v的路径上的任意一条边k1<i,j>,我们就在x[k1]与y[k2]间连一条权值为w[k1]-w[k2]的边。之后直接跑一边KM就行了。。。



AC代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)>(b)?(b):(a))

using namespace std;

int a[510]={0},b[510]={0},z[501]={0};
int g[510][510]={{0}};
int x[510]={0},y[510]={0};
int w[510][510]={{0}};
int slack[510]={0};
int n,m;
int hashx[510]={0};
int hashy[510]={0};
int father[510]={0};

bool find(int k)
{
	hashx[k]=1;
	for(int i=1;i<=m;i++)
	{
		if(hashy[i]==0 && w[k][i]==x[k]+y[i])
		{
			hashy[i]=1;
			if(father[i]==0 || find(father[i])==1)
			{
				father[i]=k;
				return true;
			}
		}
		else slack[i]=MIN(slack[i],x[k]+y[i]-w[k][i]);
	}
	return false;
}

void km()
{
	for(int i=1;i<=m;i++)
		for(int j=1;j<=m;j++)
			x[i]=MAX(w[i][j],x[i]);
	for(int i=1;i<=m;i++)
	{
		memset(slack,0x3f3f3f3f,sizeof(slack));
		for(;;)
		{
			int d=2e9;
			memset(hashx,0,sizeof(hashx));
			memset(hashy,0,sizeof(hashy));
			if(find(i)==1) break;
			for(int i=1;i<=m;i++)
				if(hashy[i]==0)
					d=MIN(d,slack[i]);
			for(int i=1;i<=m;i++)
			{
				if(hashx[i]==1)
					x[i]-=d;
				if(hashy[i]==1)
					y[i]+=d;
				else slack[i]-=d;
			}
		}
	}
	return;
}

bool dfs(int father,int u,int v,int k)
{
	if(u==v) return true;
	for(int i=1;i<=n;i++)
	{
		if(i==father || g[u][i]==0) continue;
		if(dfs(u,i,v,k)==1)
		{
			w[g[u][i]][k]=z[g[u][i]]-z[k];
			return true;
		}
	}
	return false;
}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
		scanf("%d%d%d",&a[i],&b[i],&z[i]);
	for(int i=1;i<n;i++)
		g[a[i]][b[i]]=g[b[i]][a[i]]=i;
	for(int i=n;i<=m;i++)
		dfs(0,a[i],b[i],i);

	km();
	
	for(int i=1;i<n;i++) printf("%d\n",z[i]-x[i]);
	for(int i=n;i<=m;i++) printf("%d\n",z[i]+y[i]);

	return 0;
}


sgu-206 Roads