首页 > 代码库 > 秦九韶方法
秦九韶方法
对于给定x,求n次多项式P(x)=a0+a1x+a2x2+a3x3+······+anxn
令P(x)=vn , 则vn=a0+a1x+a2x2+a3x3+······+anxn=a0+x(a1+a2x+a3x2+······+anxn-1)
vn-1=a1+a2x+a3x2+······+anxn-1=a1+x(a2+a3x+a4x2+·····+anxn-2)
vn-2=a2+a3x+a4x2+·····+anxn-2=a2+x(a3+a4x+a5x2+·····+anxn-3)
由此递推
v2=an-2+an-1x+anx2=an-2+x(an-1+anx)
v1=an-1+anx
v0=an
可以发现 v0=an
vk=x·vk-1+an-k (k=1,2,3,....,n)
所求P(x)=vn
秦九韶方法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。