首页 > 代码库 > Day 32 process&threading_4

Day 32 process&threading_4

线程和进程 4

一、multiprocessing模块    

  multiprocessing包是Python中的多进程管理包。
与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。

1, python的Process类的进程调用

 1 ##############  进程调用 2 #  调用进程模块和时间模块,并测试多进程功能 3  4 from multiprocessing import Process 5 import time 6  7 def pp(name): 8     """ 9     函数:完成进程调用测试工作10     :return:11     """12     print("you are coming!",name,time.ctime())13     time.sleep(2)14 15 if __name__ == __main__:16     p_list = []17 18     # 开三个分进程,程序本身算主进程19     for i in range(3):20         p = Process(target=pp,args=("%s" %i,))  # 调用方式基本和thread相似21         p_list.append(p)22         p.start()23 24     for j in p_list:  # 分别阻断进程和主进程间关系25         j.join()26 27     print("end!",time.ctime())

2,继承类的调用方式

 1 ######## 继承Process类调用 2 # 3  4 from multiprocessing import Process 5 import time 6  7 class MyProcess(Process): 8     """ 9     继承父类Process的所用属性和功能10     """11     def __init__(self):12         Process.__init__(self)  # 继承父类的所有__init__属性13 14     # 实例执行start时,自动触发run的执行,可查看系统源码追溯到15     def run(self):16         print("Welcome to beijing!",self,time.ctime())17         time.sleep(2)18 19 if __name__ == __main__:20     p_list = []21     for i in range(3):22         xx = MyProcess()23         xx.start()24         p_list.append(xx)25 26     for j in p_list:27         j.join()28 29     print("END!",time.ctime())

二、进程间的通讯

2、1  进程队列queue

 1 from multiprocessing import Process,Queue 2  3 def xx(q,n): 4     q.put(n*n+6) 5     # 测试子线程队列的位置 6     print("son process of:",id(q)) 7  8 if __name__ == __main__: 9     q = Queue()10     # 测试主线程队列的位置11     print("main process of: ",id(q))12 13     for i in range(3):14         p = Process(target=xx,args=(q,i,))15         p.start()16 17     print(q.get())18     print(q.get())19     print(q.get())20 21 ‘‘‘22 # 事实是为了证明:Queue虽然实现了线程间的交流,但是实际是在不同线程开辟了不一样的内存空间。然而linux优化,结果就如下了:mac是一样的23 main process of:  431992519224 son process of: 431992519225 626 son process of: 431992519227 728 son process of: 431992519229 1030 ‘‘‘

2、2 进程管道 Pipe

 1 ############## Pipe 进程管道 2 """ 3 Pipe()返回的两个连接对象代表管道的两端。 4     每个连接对象都有send()和recv()方法(等等)。 5     请注意,如果两个进程(或线程)尝试同时读取或写入管道的同一端,管道中的数据可能会损坏。 6 """ 7  8 from multiprocessing import Process,Pipe 9 10 def x_l(l_conn):11     """12     开辟一个进程负责lc的通话13     :param l_conn:14     :return:15     """16     l_conn.send("Welcome to beijing!")17     response = l_conn.recv()18     print("x:",response)19     l_conn.close()20 21 if __name__ == __main__:22     x_conn,l_conn = Pipe()23     p = Process(target=x_l,args=(l_conn,))  # 开子进程,负责lc24     p.start()25     res = x_conn.recv()26     print("l:",res)27     x_conn.send("Im coming!")28     p.join()29 30 """31 l: Welcome to beijing!32 x: Im coming!33 """

 2,3 Manager 数据共享

 1 ############## Manager 数据共享:一个数据去更改另一个进程里的数据 2  3 from multiprocessing import Manager,Process 4  5 def xl(Mlist,i): 6     Mlist.append(i) 7  8 if __name__ == __main__: 9     manager = Manager()  # 实例一个Manager10     Mlist = manager.list([1,"a"])  # 数据共享类型为列表,也可以用字典等11     l = []12 13     # 开子进程,并往主线程共享列表添加变量14     for i in range(5):15         p = Process(target=xl,args=(Mlist,i,))16         p.start()17         l.append(p)18 19     for j in l:20         j.join()21 22     print(Mlist

2,4 Pool 进程池

 1 ############## Pool 2 """ 3 进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程, 4 如果进程池序列中没有可供使用的进进程,那么程序就会等待, 5 直到进程池中有可用进程为止。 6 """ 7 from multiprocessing import Pool 8 import time 9 10 def xl(n):11     print(n)12     time.sleep(2)13     print("END!")14 15 if __name__ == __main__:16     pool_obj = Pool()  # 进程池,默认进程数是cpu核数,其中os.cpu_count()查看17     for i in range(20):18         pool_obj.apply_async(func=xl,args=(i,))19     pool_obj.close()  # 执行后,不会有新等进程进入进程池20     pool_obj.join()  # join()在close()之后,套路,牢记!!!21 22     print("ALL IS OVER!")

 

1 p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()2 p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。3    4 p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成5 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用

三, 协程

1 """2 协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。3 对比操作系统控制线程的切换,用户在单线程内控制协程的切换,优点如下:4 1.  协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级5 2. 单线程内就可以实现并发的效果,最大限度地利用cpu6 """
 1 import time 2  3 """ 4 传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。 5 如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高。 6 """ 7 # 注意到consumer函数是一个generator(生成器): 8 # 任何包含yield关键字的函数都会自动成为生成器(generator)对象 9 10 def consumer():11     r = ‘‘12     while True:13         # 3、consumer通过yield拿到消息,处理,又通过yield把结果传回;14         #    yield指令具有return关键字的作用。然后函数的堆栈会自动冻结(freeze)在这一行。15         #    当函数调用者的下一次利用next()或generator.send()或for-in来再次调用该函数时,16         #    就会从yield代码的下一行开始,继续执行,再返回下一次迭代结果。通过这种方式,迭代器可以实现无限序列和惰性求值。17         n = yield r18         if not n:19             return20         print([CONSUMER] ←← Consuming %s... % n)21         time.sleep(1)22         r = 200 OK23 def produce(c):24     # 1、首先调用c.next()启动生成器25     next(c)26     n = 027     while n < 5:28         n = n + 129         print([PRODUCER] →→ Producing %s... % n)30         # 2、然后,一旦生产了东西,通过c.send(n)切换到consumer执行;31         cr = c.send(n)32         # 4、produce拿到consumer处理的结果,继续生产下一条消息;33         print([PRODUCER] Consumer return: %s % cr)34     # 5、produce决定不生产了,通过c.close()关闭consumer,整个过程结束。35     c.close()36 if __name__==__main__:37     # 6、整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。38     c = consumer()39     produce(c)40     41     42 ‘‘‘43 result:44 45 [PRODUCER] →→ Producing 1...46 [CONSUMER] ←← Consuming 1...47 [PRODUCER] Consumer return: 200 OK48 [PRODUCER] →→ Producing 2...49 [CONSUMER] ←← Consuming 2...50 [PRODUCER] Consumer return: 200 OK51 [PRODUCER] →→ Producing 3...52 [CONSUMER] ←← Consuming 3...53 [PRODUCER] Consumer return: 200 OK54 [PRODUCER] →→ Producing 4...55 [CONSUMER] ←← Consuming 4...56 [PRODUCER] Consumer return: 200 OK57 [PRODUCER] →→ Producing 5...58 [CONSUMER] ←← Consuming 5...59 [PRODUCER] Consumer return: 200 OK60 ‘‘‘

 3,1 Gevent

 1 #############   协程 greenlet 2  3 from gevent import monkey 4 monkey.patch_all() 5 import gevent 6 from urllib import request 7 import time 8  9 def xl(url):10     print("GET:%s" %url)11     res = request.urlopen(url)12     data =http://www.mamicode.com/ res.read()13     print("%d bytes recevied from %s" %(len(data),url))14 15 start = time.time()16 17 gevent.joinall([18     # gevent.spawn(xl,"http://www.xiaohuar.com"),19     gevent.spawn(xl,"http://www.mmjpg.com"),20     gevent.spawn(xl,"http://www.fengniao.com")21 ])22 23 print(time.time()-start)

 

 
 
Greenlet
Gevent 自动切换的牛逼之处,可以的就开干 

 

Day 32 process&threading_4