首页 > 代码库 > Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组

Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组

题意:给出两个排列,求出每个排列在全排列的排行,相加,模上n!(全排列个数)得出一个数k,求出排行为k的排列。

解法:首先要得出定位方法,即知道某个排列是第几个排列。比如 (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0).

拿排列(1,2,0)来说,首位是1,前面有cnt=1个小于1的没被用过的数(0),所以它的排行要加上(cnt=1)*2!,第二位为2,因为1已经放了,所以小于2的只有0了,即cnt=1个,所以,排行又要加上(cnt=1)*1!,所以排行为3.

推出一般性结论:

技术分享

pre[i]表示小于 i 且没被占据的数的个数。我们可以用树状数组一边更新一边查询求得给出的两个排列的所有pre[]值,存到p数组:p1[i] = pre1[b1[i]],p2[i] = pre2[b2[i]]

然后Rank和为(p1[i]+p2[i])*(n-1)! + ... + (p1[n]+p2[n])*0! = p3[1]*(n-1)! + ... + p3[n]*0! ,但是得出的表达式可能不是规整的形式,这是我们需要检测一边,从后往前扫,如果p3[i] >= (n-i+1), 说明第 i 项已经超过 (n-i+1)*(n-i), 那么就应进位到(n-i+1)!, 即p3[i-1]+=1,依此类推,第1位的进位不再考虑。

最后得出规整的正确的p3[]序列,然后通过树状数组+二分在nlognlogn的复杂度将p3每位对应到结果排列的每位数上,即为上面求Rank(p)的反操作,不细讲了,想一想就知道了。

代码:

技术分享
#include <iostream>#include <cstdio>#include <cstring>#include <cstdlib>#include <cmath>#include <algorithm>#include <string>#include <vector>#include <queue>using namespace std;#define N 200107int p1[N],p2[N],p3[N],c[N];int n;int lowbit(int x) { return x&-x; }void modify(int x,int val){    while(x <= n+10)    {        c[x] += val;        x += lowbit(x);    }}int getsum(int x){    int res = 0;    while(x > 0)    {        res += c[x];        x -= lowbit(x);    }    return res;}int main(){    int i,j,x;    while(scanf("%d",&n)!=EOF)    {        memset(c,0,sizeof(c));        for(i=1;i<=n;i++) modify(i,1);        for(i=1;i<=n;i++)        {            scanf("%d",&x);            x++;            p1[i] = getsum(x-1);            modify(x,-1);        }        memset(c,0,sizeof(c));        for(i=1;i<=n;i++) modify(i,1);        for(i=1;i<=n;i++)        {            scanf("%d",&x);            x++;            p2[i] = getsum(x-1);            modify(x,-1);        }        memset(p3,0,sizeof(p3));        for(i=n;i>=1;i--)        {            p3[i] += p1[i]+p2[i];            if(p3[i] >= (n-i+1))            {                p3[i] = p3[i]-(n-i+1);                if(i != 1) p3[i-1]++;            }        }        memset(c,0,sizeof(c));        for(i=1;i<=n;i++) modify(i,1);//        for(i=1;i<=n;i++)//            cout<<p3[i]<<" ";//        cout<<endl;        for(i=1;i<=n;i++)        {            int low = 1, high = n;            while(low <= high)            {                int mid = (low+high)/2;                if(getsum(mid-1) > p3[i])                    high = mid-1;                else if(getsum(mid-1) == p3[i] && getsum(mid)-getsum(mid-1) == 1)                    high = mid-1;                else if(getsum(mid-1) == p3[i] && getsum(mid)-getsum(mid-1) < 1)                    low = mid+1;                else if(getsum(mid-1) < p3[i])                    low = mid+1;            }            modify(low,-1);            printf("%d ",low-1);        }        puts("");    }    return 0;}
View Code

比赛中写的代码,没有最简化,有很多冗余和多此一举的地方。

Codeforces Round #285 (Div.1 B & Div.2 D) Misha and Permutations Summation --二分+树状数组