首页 > 代码库 > pandas 常用统计方法

pandas 常用统计方法

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> df
    one  two
1.40  NaN
7.10 -4.5
c   NaN  NaN
0.75 -1.3
 
[4 rows x 2 columns]
>>> df.mean()
one    3.083333
two   -2.900000
dtype: float64
>>> df.mean(axis=1)
a    1.400
b    1.300
c      NaN
d   -0.275
dtype: float64
>>> df.mean(axis=1,skipna=False)
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64

其他常用的统计方法有:

########################******************************************
count非 NA 值的数量
describe针对 Series 或 DF 的列计算汇总统计
min , max最小值和最大值
argmin , argmax最小值和最大值的索引位置(整数)
idxmin , idxmax最小值和最大值的索引值
quantile样本分位数(0 到 1)
sum求和
mean均值
median中位数
mad根据均值计算平均绝对离差
var方差
std标准差
skew样本值的偏度(三阶矩)
kurt样本值的峰度(四阶矩)
cumsum样本值的累计和
cummin , cummax样本值的累计最大值和累计最小值
cumprod样本值的累计积
diff计算一阶差分(对时间序列很有用)
pct_change计算百分数变化

pandas 常用统计方法