首页 > 代码库 > OpenCV图像匹配算法之sift
OpenCV图像匹配算法之sift
//utils.h #ifndef _UTILS_H #define _UTILS_H #include <opencv2/opencv.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2\nonfree\nonfree.hpp> using namespace cv; // ORB settings const int ORB_MAX_KPTS = 1500; const float ORB_SCALE_FACTOR = 1.5; const int ORB_PYRAMID_LEVELS = 3; const float ORB_EDGE_THRESHOLD = 31.0; const int ORB_FIRST_PYRAMID_LEVEL = 0; const int ORB_WTA_K = 2; const int ORB_PATCH_SIZE = 31; // BRISK settings const float BRISK_HTHRES = 10.0; const int BRISK_NOCTAVES = 6; const float DRATIO = 0.8f; // NNDR Matching value const float MIN_H_ERROR = 2.50f; // Maximum error in pixels to accept an inlier void matches2points_nndr(const std::vector<cv::KeyPoint>& train, const std::vector<cv::KeyPoint>& query, const std::vector<std::vector<cv::DMatch> >& matches, std::vector<cv::Point2f>& pmatches, float nndr); void compute_inliers_ransac(const std::vector<cv::Point2f>& matches, std::vector<cv::Point2f>& inliers, float error, bool use_fund); void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com, const std::vector<cv::Point2f>& ptpairs, int color); typedef struct info { double t; int n1; int n2; int m; int rm; }INFO; void sift(char* path1, char* path2, INFO& info, bool show); void surf(char* path1, char* path2, INFO& info, bool show); void orb(char* path1, char* path2, INFO& info, bool show); void brisk(char* path1, char* path2, INFO& info, bool show); void freak(char* path1, char* path2, INFO& info, bool show); void showInfo(INFO info); #endif
//utils.cpp #include "stdafx.h" #include "utils.h" #include <iostream> using namespace std; /** * @brief This function converts matches to points using nearest neighbor distance * ratio matching strategy * @param train Vector of keypoints from the first image * @param query Vector of keypoints from the second image * @param matches Vector of nearest neighbors for each keypoint * @param pmatches Vector of putative matches * @param nndr Nearest neighbor distance ratio value */ void matches2points_nndr(const std::vector<cv::KeyPoint>& train, const std::vector<cv::KeyPoint>& query, const std::vector<std::vector<cv::DMatch> >& matches, std::vector<cv::Point2f>& pmatches, float nndr) { float dist1 = 0.0, dist2 = 0.0; for (size_t i = 0; i < matches.size(); i++) { DMatch dmatch = matches[i][0]; dist1 = matches[i][0].distance; dist2 = matches[i][1].distance; if (dist1 < nndr*dist2) { pmatches.push_back(train[dmatch.queryIdx].pt); pmatches.push_back(query[dmatch.trainIdx].pt); } } } /** * @brief This function computes the set of inliers estimating the fundamental matrix * or a planar homography in a RANSAC procedure * @param matches Vector of putative matches * @param inliers Vector of inliers * @param error The minimum pixelic error to accept an inlier * @param use_fund Set to true if you want to compute a fundamental matrix */ void compute_inliers_ransac(const std::vector<cv::Point2f>& matches, std::vector<cv::Point2f>& inliers, float error, bool use_fund) { vector<Point2f> points1, points2; Mat H = Mat::zeros(3,3,CV_32F); int npoints = matches.size()/2; Mat status = Mat::zeros(npoints,1,CV_8UC1); for (size_t i = 0; i < matches.size(); i+=2) { points1.push_back(matches[i]); points2.push_back(matches[i+1]); } if (use_fund == true){ H = findFundamentalMat(points1,points2,CV_FM_RANSAC,error,0.99,status); } else { H = findHomography(points1,points2,CV_RANSAC,error,status); } for (int i = 0; i < npoints; i++) { if (status.at<unsigned char>(i) == 1) { inliers.push_back(points1[i]); inliers.push_back(points2[i]); } } } //******************************************************************************* //******************************************************************************* /** * @brief This function draws the set of the inliers between the two images * @param img1 First image * @param img2 Second image * @param img_com Image with the inliers * @param ptpairs Vector of point pairs with the set of inliers * @param color The color for each method */ void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com, const std::vector<cv::Point2f>& ptpairs, int color) { int x1 = 0, y1 = 0, x2 = 0, y2 = 0; float rows1 = 0.0, cols1 = 0.0; float rows2 = 0.0, cols2 = 0.0; float ufactor = 0.0, vfactor = 0.0; rows1 = img1.rows; cols1 = img1.cols; rows2 = img2.rows; cols2 = img2.cols; ufactor = (float)(cols1)/(float)(cols2); vfactor = (float)(rows1)/(float)(rows2); // This is in case the input images don't have the same resolution Mat img_aux = Mat(Size(img1.cols,img1.rows),CV_8UC3); resize(img2,img_aux,Size(img1.cols,img1.rows),0,0,CV_INTER_LINEAR); for (int i = 0; i < img_com.rows; i++) { for (int j = 0; j < img_com.cols; j++) { if (j < img1.cols) { *(img_com.ptr<unsigned char>(i)+3*j) = *(img1.ptr<unsigned char>(i)+3*j); *(img_com.ptr<unsigned char>(i)+3*j+1) = *(img1.ptr<unsigned char>(i)+3*j+1); *(img_com.ptr<unsigned char>(i)+3*j+2) = *(img1.ptr<unsigned char>(i)+3*j+2); } else { *(img_com.ptr<unsigned char>(i)+3*j) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols)); *(img_com.ptr<unsigned char>(i)+3*j+1) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols)+1); *(img_com.ptr<unsigned char>(i)+3*j+2) = *(img_aux.ptr<unsigned char>(i)+3*(j-img_aux.cols)+2); } } } for (size_t i = 0; i < ptpairs.size(); i+= 2) { x1 = (int)(ptpairs[i].x+.5); y1 = (int)(ptpairs[i].y+.5); x2 = (int)(ptpairs[i+1].x*ufactor+img1.cols+.5); y2 = (int)(ptpairs[i+1].y*vfactor+.5); if (color == 0) { line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,255,0),1); } else if (color == 1) { line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,0,0),1); } else if (color == 2) { line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(0,0,255),1); } } } void showInfo(INFO info) { printf("%-40s%d\n","The keypoints number of src image is :", info.n1); printf("%-40s%d\n","The keypoints number of dst image is : ", info.n2); printf("%-40s%d\n","The matching number is : ", info.m); printf("%-40s%d\n","The right result number is : ", info.rm); printf("%-40s%.2fs\n","The total time is : ", info.t); return ; }
//sift.cpp #include "stdafx.h" #include <cv.hpp> #include <highgui.h> #include "utils.h" #include <iostream> using namespace std; void sift(char* path1, char* path2, INFO& info, bool show) { double t1,t2; t1=cvGetTickCount(); initModule_nonfree(); Mat img1, img2; img1=imread(path1,0); img2=imread(path2,0); if(img1.data=http://www.mamicode.com/=NULL)>使用
INFO sift_info; sift(path1,path2,sift_info,true); showInfo(sift_info);OpenCV图像匹配算法之sift
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。