首页 > 代码库 > 图像处理之基础---基于opencv的灰度图像微分
图像处理之基础---基于opencv的灰度图像微分
argv分别为,可执行文件名、读入的原始图像、输出原始图像的灰度值、输出原始图像灰度值沿x轴方向的一阶微分、输出原始图像灰度值沿x轴方向的二阶微分。
#include
#include
#include
#include
#include
#pragma comment( lib, "opencv_highgui243d.lib" )
#pragma comment( lib, "opencv_core243d.lib" )
#pragma comment( lib, "opencv_ml243d.lib" )
#pragma comment( lib, "opencv_imgproc243d.lib" )
int main( int argc, char** argv ) {
int height, width, step, channels;
uchar *grayData;
uchar grayDataTmp, prev1GrayDataTmp, prev2GrayDataTmp;
int differentialGrayFirstOrder, differentialGraySecondOrder, prevDifferentialGrayFirstOrder;
int i, j;
FILE *fpGrayOrgn, *fpGrayFirst, *fpGraySecond;
IplImage *grayImg;
//load image in single channel, aka. transform the image to gray (but not save)
grayImg = cvLoadImage(argv[1], 0);
//exit from failing loading source image
if (!grayImg)
{
printf("Could not load image file: %s", argv[1]);
exit(1);
}
//get basic information of the image
height = grayImg->height;
width = grayImg->width;
step = grayImg->widthStep;
channels = grayImg->nChannels;
//print image on screen and show basic information of the image
printf("Processing a %dx%d image with %d channels\n", height, width, channels);
cvNamedWindow ("mineSweeperWindow", CV_WINDOW_AUTOSIZE);
cvShowImage ("mineSweeperWindow", grayImg);
//exit from file create error
fpGrayOrgn = fopen(argv[2], "w+");
if (fpGrayOrgn == NULL)
{
printf("File %s create/open error!", argv[2]);
exit(2);
}
fpGrayFirst = fopen(argv[3], "w+");
if (fpGrayFirst == NULL)
{
printf("File %s create/open error!", argv[3]);
exit(3);
}
fpGraySecond = fopen(argv[4], "w+");
if (fpGraySecond == NULL)
{
printf("File %s create/open error!", argv[4]);
exit(4);
}
//move pointer to the start of file
rewind(fpGrayOrgn);
rewind(fpGrayFirst);
rewind(fpGraySecond);
//get every value (in gray) and output to a txt file
grayData = http://www.mamicode.com/(uchar *)grayImg->imageData;
for (i = 0; i < height; ++i)
{
for (j = 0; j < width; ++j)
{
//get value
grayDataTmp = grayData[i*step+j];
fprintf(fpGrayOrgn, "%4d ", grayDataTmp);
//init
if (0 == j)
{
prev1GrayDataTmp = 0;
prev2GrayDataTmp = 0;
prevDifferentialGrayFirstOrder = 0;
}
//calculate difference of first-order
differentialGrayFirstOrder = (int)grayDataTmp - (int)prev1GrayDataTmp;
fprintf (fpGrayFirst, "%4d", differentialGrayFirstOrder);
//calculate difference of second-order
differentialGraySecondOrder = differentialGrayFirstOrder - prevDifferentialGrayFirstOrder;
fprintf (fpGraySecond, "%4d", differentialGraySecondOrder);
//re-assignment
prevDifferentialGrayFirstOrder = differentialGrayFirstOrder;
prev2GrayDataTmp = prev1GrayDataTmp;
prev1GrayDataTmp = grayDataTmp;
}
//insert a newline
fprintf(fpGrayOrgn, "\n");
fprintf(fpGrayFirst, "\n");
fprintf(fpGraySecond, "\n");
}
fclose (fpGrayOrgn);
fclose (fpGrayFirst);
fclose (fpGraySecond);
//end print process
cvWaitKey(0);
cvReleaseImage( &grayImg );
cvDestroyWindow("mineSwepperWindow");
return ( 0 );
}
【】
http://www.infineon-ecosystem.org/focusnie/blog/13-07/295656_9bd39.html
图像处理之基础---基于opencv的灰度图像微分