首页 > 代码库 > spoj 1811

spoj 1811

1811. Longest Common Substring

Problem code: LCS 

A string is finite sequence of characters over a non-empty finite set Σ.

In this problem, Σ is the set of lowercase letters.

Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

Now your task is simple, for two given strings, find the length of the longest common substring of them.

Here common substring means a substring of two or more strings.

Input

The input contains exactly two lines, each line consists of no more than 250000 lowercase letters, representing a string.

Output

The length of the longest common substring. If such string doesn‘t exist, print "0" instead.

Example

Input:

alsdfkjfjkdsal

fdjskalajfkdsla

Output:

3

题目大意:
求两个字符串的最长公共字串.输出长度.

分析:
们引入这个记号:

max:即代码中 step 变量,它表示该状态能够接受的最长的字符串长度。
min:表示该状态能够接受的最短的字符串长度。实际上等于该状态的 par 指针指向的结点的 step + 1。
max-min+1:表示该状态能够接受的不同的字符串数。

如果你很好奇这个性质为什么成立,不妨参看范浩强的博文:后缀自动机与线性构造后缀树 
从后缀树的角度来思考这个问题就非常简单了.

我们先进行贪心的匹配,如果在某个点上发生失配,说明 min_x ~ max_x 之间的字符串都是不匹配的.

那么我们该如何回退呢?

这个点和parent之间的关系是: 它的parent能够接受的最长串是这个点所能接受的串的最长公共前缀.

你又非常好奇, 那么这么说吧.后缀树上parent是这个点的父节点.那么你要走到这个点,就必须经过parent.

所以我们只要沿着par边向上跳就ok了.

接下来跟KMP比较类似就不详细说了.

代码也不长:

技术分享
 1 #include<cstdlib> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cstring> 5 using namespace std; 6 const int maxn = (int)3e5, sigma = 26; 7 char s1[maxn],s2[maxn]; 8 struct Sam{ 9     int ch[maxn][sigma],par[maxn];10     int stp[maxn];11     int sz,last;12     void init(){13         memset(ch,0,sizeof(ch)); memset(par,0,sizeof(par));    memset(stp,0,sizeof(stp));14         sz = last = 1;15     }16     void ext(int c){17         stp[++sz] = stp[last] + 1;18         int p = last, np = sz;19         while(!ch[p][c]) ch[p][c] = np, p = par[p];20         if(p == 0) par[np] = 1;21         else{22             int q = ch[p][c];23             if(stp[q] != stp[p] + 1){24                 stp[++sz] = stp[p] + 1;25                 int nq = sz;26                 memcpy(ch[nq],ch[q],sizeof(ch[q]));27                 par[nq] = par[q];28                 par[q] = par[np] = nq;29                 while(ch[p][c] == q) ch[p][c] = nq, p = par[p];30             }31             else par[np] = q;32         }33         last = np;34     }35     void build(char *pt){36         int i;37         init();38         for(i = 0; pt[i]; ++i) ext(pt[i] - a);39     }40     int vis(char *pt){41         int x = 1,i,ret = 0,ans = 0;42         for(i = 0; pt[i]; ++i){43             if(ch[x][pt[i] - a]) 44                 x = ch[x][pt[i] - a], ans = max(ans,++ret);45             else x = par[x],ret = stp[x],i -= (x != 0);46             if(x == 0) x = 1;47         }48         return ans;49     }50 }sam;51 int main()52 {53     freopen("substr.in","r",stdin);54     freopen("substr.out","w",stdout);55     scanf("%s\n",s1);56     scanf("%s\n",s2);57     sam.build(s1);58     printf("%d\n",sam.vis(s2));59     return 0;60 } 
View Code

 

 

spoj 1811