首页 > 代码库 > 高斯拟合c++实现
高斯拟合c++实现
高斯函数是数学上非常重要的函数,我们熟悉的正态分布的密度函数就是高斯函数,也称高斯分布。而正态分布无疑是概率论与数理统计里最重要的一个分布了。
现在的问题是如果给出一些点集,如何找到一个高斯函数来拟合这些点集呢!
当然,拟合方式还是最小二乘法,拟合函数形式为:
y=a*exp(-((x-b)/c)^2);
一共有三个参数,a、b、c.不过这种指数函数拟合比较难实现,所以利用对数变换将其化为二次函数,如下:
ln(y)=-(1/c^2)*x^2+(2b/c^2)*x +ln(a)-(b/c)^2;
这样,另z=ln(y),A=-(1/c^2),B=(2b/c^2),C=ln(a)-(b/c)^2;就可以利用最小二乘法拟合了,
这里我还是用奇异值分解法来解出最小二乘解,不过在这之前我先对点集做了处理,我并没有拟合所有的点集,因为这样效果很差,毕竟做了对数变换,
导致平坦点对曲线的影响太大,所以我事先判断出了峰值点,然后对峰值点做拟合,事实证明我的想法没错,拟合效果改善了很多!
VC实现效果如下:
核心程序实现如下:
//GaussFit.h
/************************************************************************* 版本: 2014-1-06 功能说明: 对平面上的一些列点给出最小二乘的高斯拟合,利用奇异值分解法 解得最小二乘解作为高斯参数。 调用形式: gaussfit( arrayx, arrayy,int n,float box,miny );; 参数说明: arrayx: arrayx[n],每个值为x轴一个点 arrayx: arrayy[n],每个值为y轴一个点 n : 点的个数 box : box[3],高斯函数的3个参数,分别为a,b,c; miny :y方向上的平移,实际拟合的函数为y=a*exp(-((x-b)/c)^2)+miny ***************************************************************************/ #pragma once struct GPOINT { int x; int y; GPOINT(int x,int y):x(x),y(y){}; friend bool operator <(GPOINT p1,GPOINT p2) { return p1.x>p2.x; } }; class GaussFit { public: GaussFit(void); ~GaussFit(void); void gaussfit( int *arrayx, int *arrayy,int n,float *box,int &miny ); private: int SVD(float *a,int m,int n,float b[],float x[],float esp); int gmiv(float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka); int ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka); int muav(float a[],int m,int n,float u[],float v[],float eps,int ka); };
//GaussFit.cpp
#include "StdAfx.h" #include "GaussFit.h" #include <cmath> #include<queue> #include<vector> using namespace std; GaussFit::GaussFit(void) { } GaussFit::~GaussFit(void) { } void GaussFit::gaussfit( int *arrayx, int *arrayy,int n,float *box,int &miny ) { float *A1=new float[n*3]; float *B1=new float[n]; float *Pointx=new float[n]; float *Pointy=new float[n]; int maxy=0,midx,minx; miny=INT_MAX; const double min_eps = 1e-10; int i; priority_queue<GPOINT> gp; //用来对point.x排序 priority_queue<int>py; //用来计算第m小的point.y int m=n/10; m=m>0?m:1; for(i=0;i<n;i++) { GPOINT tmp(arrayx[i],arrayy[i]); gp.push(tmp); if(py.size()<m) { py.push(arrayy[i]); } else if(py.top()>arrayy[i]) { py.pop(); py.push(arrayy[i]); } } miny=py.top(); //用第m小的y代替最小的y,防止异常点 minx=gp.top().x; for( i=0;i<n;i++) { GPOINT tmp=gp.top(); gp.pop(); Pointx[i]=(tmp.x-minx)*1.0; Pointy[i]=(tmp.y-miny)*1.0; if(Pointy[i]>maxy) { maxy=Pointy[i]; midx=i; } else if (Pointy[i]<0) { Pointy[i]=0; } } float meany=0; for(int i=0;i<n;i++) { meany+=Pointy[i]; } meany/=n; //统计峰值 vector<GPOINT>VG,Vtmp; for(int i=0;i<n;i++) { if(Pointy[i]>meany) { GPOINT tmp(Pointx[i],Pointy[i]); Vtmp.push_back(tmp); } else { int s1=VG.size(),s2=Vtmp.size(); if(s1<s2) { VG.clear(); for(int j=0;j<Vtmp.size();j++) { GPOINT tmp1(Vtmp[j].x,Vtmp[j].y); VG.push_back(tmp1); } } Vtmp.clear(); } } int s1=VG.size(),s2=Vtmp.size(); if(s1<s2) { VG.clear(); for(int j=0;j<Vtmp.size();j++) { GPOINT tmp1(Vtmp[j].x,Vtmp[j].y); VG.push_back(tmp1); } } //对峰值进行高斯拟合 int size=VG.size(); if(size>0) { for( i = 0; i < n; i++ ) { int step=(i)*3; float px,py; px = VG[i%size].x; py = VG[i%size].y; B1[i] = log(py); A1[step] = 1.0; A1[step + 1] = px; A1[step + 2] = px * px; } float *x1=new float[3]; SVD(A1,n,3,B1,x1,min_eps); if (x1[2]<0) { box[2]=sqrt(-1.0/x1[2]); box[1]=x1[1]*box[2]*box[2]*0.5; box[0]=exp(x1[0]+box[1]*box[1]/(box[2]*box[2])); box[1]+=minx; } else { box[0]=box[1]=box[2]=-1; } delete []x1; } else { box[0]=box[1]=box[2]=-1; } delete []A1; delete []B1; delete []Pointx; delete []Pointy; } int GaussFit::SVD(float *a,int m,int n,float b[],float x[],float esp) { float *aa; float *u; float *v; aa=new float[n*m]; u=new float[m*m]; v=new float[n*n]; int ka; int flag; if(m>n) { ka=m+1; }else { ka=n+1; } flag=gmiv(a,m,n,b,x,aa,esp,u,v,ka); delete []aa; delete []u; delete []v; return(flag); } int GaussFit::gmiv( float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka) { int i,j; i=ginv(a,m,n,aa,eps,u,v,ka); if (i<0) return(-1); for (i=0; i<=n-1; i++) { x[i]=0.0; for (j=0; j<=m-1; j++) x[i]=x[i]+aa[i*m+j]*b[j]; } return(1); } int GaussFit::ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka) { // int muav(float a[],int m,int n,float u[],float v[],float eps,int ka); int i,j,k,l,t,p,q,f; i=muav(a,m,n,u,v,eps,ka); if (i<0) return(-1); j=n; if (m<n) j=m; j=j-1; k=0; while ((k<=j)&&(a[k*n+k]!=0.0)) k=k+1; k=k-1; for (i=0; i<=n-1; i++) for (j=0; j<=m-1; j++) { t=i*m+j; aa[t]=0.0; for (l=0; l<=k; l++) { f=l*n+i; p=j*m+l; q=l*n+l; aa[t]=aa[t]+v[f]*u[p]/a[q]; } } return(1); } int GaussFit::muav(float a[],int m,int n,float u[],float v[],float eps,int ka) { int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks; float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2]; float *s,*e,*w; //void ppp(); // void sss(); void ppp(float a[],float e[],float s[],float v[],int m,int n); void sss(float fg[],float cs[]); s=(float *) malloc(ka*sizeof(float)); e=(float *) malloc(ka*sizeof(float)); w=(float *) malloc(ka*sizeof(float)); it=60; k=n; if (m-1<n) k=m-1; l=m; if (n-2<m) l=n-2; if (l<0) l=0; ll=k; if (l>k) ll=l; if (ll>=1) { for (kk=1; kk<=ll; kk++) { if (kk<=k) { d=0.0; for (i=kk; i<=m; i++) { ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];} s[kk-1]=(float)sqrt(d); if (s[kk-1]!=0.0) { ix=(kk-1)*n+kk-1; if (a[ix]!=0.0) { s[kk-1]=(float)fabs(s[kk-1]); if (a[ix]<0.0) s[kk-1]=-s[kk-1]; } for (i=kk; i<=m; i++) { iy=(i-1)*n+kk-1; a[iy]=a[iy]/s[kk-1]; } a[ix]=1.0f+a[ix]; } s[kk-1]=-s[kk-1]; } if (n>=kk+1) { for (j=kk+1; j<=n; j++) { if ((kk<=k)&&(s[kk-1]!=0.0)) { d=0.0; for (i=kk; i<=m; i++) { ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1; d=d+a[ix]*a[iy]; } d=-d/a[(kk-1)*n+kk-1]; for (i=kk; i<=m; i++) { ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1; a[ix]=a[ix]+d*a[iy]; } } e[j-1]=a[(kk-1)*n+j-1]; } } if (kk<=k) { for (i=kk; i<=m; i++) { ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1; u[ix]=a[iy]; } } if (kk<=l) { d=0.0; for (i=kk+1; i<=n; i++) d=d+e[i-1]*e[i-1]; e[kk-1]=(float)sqrt(d); if (e[kk-1]!=0.0) { if (e[kk]!=0.0) { e[kk-1]=(float)fabs(e[kk-1]); if (e[kk]<0.0) e[kk-1]=-e[kk-1]; } for (i=kk+1; i<=n; i++) e[i-1]=e[i-1]/e[kk-1]; e[kk]=1.0f+e[kk]; } e[kk-1]=-e[kk-1]; if ((kk+1<=m)&&(e[kk-1]!=0.0)) { for (i=kk+1; i<=m; i++) w[i-1]=0.0; for (j=kk+1; j<=n; j++) for (i=kk+1; i<=m; i++) w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1]; for (j=kk+1; j<=n; j++) for (i=kk+1; i<=m; i++) { ix=(i-1)*n+j-1; a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk]; } } for (i=kk+1; i<=n; i++) v[(i-1)*n+kk-1]=e[i-1]; } } } mm=n; if (m+1<n) mm=m+1; if (k<n) s[k]=a[k*n+k]; if (m<mm) s[mm-1]=0.0; if (l+1<mm) e[l]=a[l*n+mm-1]; e[mm-1]=0.0; nn=m; if (m>n) nn=n; if (nn>=k+1) { for (j=k+1; j<=nn; j++) { for (i=1; i<=m; i++) u[(i-1)*m+j-1]=0.0; u[(j-1)*m+j-1]=1.0; } } if (k>=1) { for (ll=1; ll<=k; ll++) { kk=k-ll+1; iz=(kk-1)*m+kk-1; if (s[kk-1]!=0.0) { if (nn>=kk+1) for (j=kk+1; j<=nn; j++) { d=0.0; for (i=kk; i<=m; i++) { ix=(i-1)*m+kk-1; iy=(i-1)*m+j-1; d=d+u[ix]*u[iy]/u[iz]; } d=-d; for (i=kk; i<=m; i++) { ix=(i-1)*m+j-1; iy=(i-1)*m+kk-1; u[ix]=u[ix]+d*u[iy]; } } for (i=kk; i<=m; i++) { ix=(i-1)*m+kk-1; u[ix]=-u[ix];} u[iz]=1.0f+u[iz]; if (kk-1>=1) for (i=1; i<=kk-1; i++) u[(i-1)*m+kk-1]=0.0; } else { for (i=1; i<=m; i++) u[(i-1)*m+kk-1]=0.0; u[(kk-1)*m+kk-1]=1.0; } } } for (ll=1; ll<=n; ll++) { kk=n-ll+1; iz=kk*n+kk-1; if ((kk<=l)&&(e[kk-1]!=0.0)) { for (j=kk+1; j<=n; j++) { d=0.0; for (i=kk+1; i<=n; i++) { ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1; d=d+v[ix]*v[iy]/v[iz]; } d=-d; for (i=kk+1; i<=n; i++) { ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1; v[ix]=v[ix]+d*v[iy]; } } } for (i=1; i<=n; i++) v[(i-1)*n+kk-1]=0.0; v[iz-n]=1.0; } for (i=1; i<=m; i++) for (j=1; j<=n; j++) a[(i-1)*n+j-1]=0.0; m1=mm; it=60; while (1==1) { if (mm==0) { ppp(a,e,s,v,m,n); free(s); free(e); free(w); return(1); } if (it==0) { ppp(a,e,s,v,m,n); free(s); free(e); free(w); return(-1); } kk=mm-1; while ((kk!=0)&&(fabs(e[kk-1])!=0.0)) { d=(float)(fabs(s[kk-1])+fabs(s[kk])); dd=(float)fabs(e[kk-1]); if (dd>eps*d) kk=kk-1; else e[kk-1]=0.0; } if (kk==mm-1) { kk=kk+1; if (s[kk-1]<0.0) { s[kk-1]=-s[kk-1]; for (i=1; i<=n; i++) { ix=(i-1)*n+kk-1; v[ix]=-v[ix];} } while ((kk!=m1)&&(s[kk-1]<s[kk])) { d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d; if (kk<n) for (i=1; i<=n; i++) { ix=(i-1)*n+kk-1; iy=(i-1)*n+kk; d=v[ix]; v[ix]=v[iy]; v[iy]=d; } if (kk<m) for (i=1; i<=m; i++) { ix=(i-1)*m+kk-1; iy=(i-1)*m+kk; d=u[ix]; u[ix]=u[iy]; u[iy]=d; } kk=kk+1; } it=60; mm=mm-1; } else { ks=mm; while ((ks>kk)&&(fabs(s[ks-1])!=0.0)) { d=0.0; if (ks!=mm) d=d+(float)fabs(e[ks-1]); if (ks!=kk+1) d=d+(float)fabs(e[ks-2]); dd=(float)fabs(s[ks-1]); if (dd>eps*d) ks=ks-1; else s[ks-1]=0.0; } if (ks==kk) { kk=kk+1; d=(float)fabs(s[mm-1]); t=(float)fabs(s[mm-2]); if (t>d) d=t; t=(float)fabs(e[mm-2]); if (t>d) d=t; t=(float)fabs(s[kk-1]); if (t>d) d=t; t=(float)fabs(e[kk-1]); if (t>d) d=t; sm=s[mm-1]/d; sm1=s[mm-2]/d; em1=e[mm-2]/d; sk=s[kk-1]/d; ek=e[kk-1]/d; b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0f; c=sm*em1; c=c*c; shh=0.0; if ((b!=0.0)||(c!=0.0)) { shh=(float)sqrt(b*b+c); if (b<0.0) shh=-shh; shh=c/(b+shh); } fg[0]=(sk+sm)*(sk-sm)-shh; fg[1]=sk*ek; for (i=kk; i<=mm-1; i++) { sss(fg,cs); if (i!=kk) e[i-2]=fg[0]; fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1]; e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1]; fg[1]=cs[1]*s[i]; s[i]=cs[0]*s[i]; if ((cs[0]!=1.0)||(cs[1]!=0.0)) for (j=1; j<=n; j++) { ix=(j-1)*n+i-1; iy=(j-1)*n+i; d=cs[0]*v[ix]+cs[1]*v[iy]; v[iy]=-cs[1]*v[ix]+cs[0]*v[iy]; v[ix]=d; } sss(fg,cs); s[i-1]=fg[0]; fg[0]=cs[0]*e[i-1]+cs[1]*s[i]; s[i]=-cs[1]*e[i-1]+cs[0]*s[i]; fg[1]=cs[1]*e[i]; e[i]=cs[0]*e[i]; if (i<m) if ((cs[0]!=1.0)||(cs[1]!=0.0)) for (j=1; j<=m; j++) { ix=(j-1)*m+i-1; iy=(j-1)*m+i; d=cs[0]*u[ix]+cs[1]*u[iy]; u[iy]=-cs[1]*u[ix]+cs[0]*u[iy]; u[ix]=d; } } e[mm-2]=fg[0]; it=it-1; } else { if (ks==mm) { kk=kk+1; fg[1]=e[mm-2]; e[mm-2]=0.0; for (ll=kk; ll<=mm-1; ll++) { i=mm+kk-ll-1; fg[0]=s[i-1]; sss(fg,cs); s[i-1]=fg[0]; if (i!=kk) { fg[1]=-cs[1]*e[i-2]; e[i-2]=cs[0]*e[i-2]; } if ((cs[0]!=1.0)||(cs[1]!=0.0)) for (j=1; j<=n; j++) { ix=(j-1)*n+i-1; iy=(j-1)*n+mm-1; d=cs[0]*v[ix]+cs[1]*v[iy]; v[iy]=-cs[1]*v[ix]+cs[0]*v[iy]; v[ix]=d; } } } else { kk=ks+1; fg[1]=e[kk-2]; e[kk-2]=0.0; for (i=kk; i<=mm; i++) { fg[0]=s[i-1]; sss(fg,cs); s[i-1]=fg[0]; fg[1]=-cs[1]*e[i-1]; e[i-1]=cs[0]*e[i-1]; if ((cs[0]!=1.0)||(cs[1]!=0.0)) for (j=1; j<=m; j++) { ix=(j-1)*m+i-1; iy=(j-1)*m+kk-2; d=cs[0]*u[ix]+cs[1]*u[iy]; u[iy]=-cs[1]*u[ix]+cs[0]*u[iy]; u[ix]=d; } } } } } } free(s);free(e);free(w); return(1); } void ppp(float a[],float e[],float s[],float v[],int m,int n) { int i,j,p,q; float d; if (m>=n) i=n; else i=m; for (j=1; j<=i-1; j++) { a[(j-1)*n+j-1]=s[j-1]; a[(j-1)*n+j]=e[j-1]; } a[(i-1)*n+i-1]=s[i-1]; if (m<n) a[(i-1)*n+i]=e[i-1]; for (i=1; i<=n-1; i++) for (j=i+1; j<=n; j++) { p=(i-1)*n+j-1; q=(j-1)*n+i-1; d=v[p]; v[p]=v[q]; v[q]=d; } return; } void sss(float fg[],float cs[]) { float r,d; if ((fabs(fg[0])+fabs(fg[1]))==0.0) { cs[0]=1.0; cs[1]=0.0; d=0.0;} else { d=(float)sqrt(fg[0]*fg[0]+fg[1]*fg[1]); if (fabs(fg[0])>fabs(fg[1])) { d=(float)fabs(d); if (fg[0]<0.0) d=-d; } if (fabs(fg[1])>=fabs(fg[0])) { d=(float)fabs(d); if (fg[1]<0.0) d=-d; } cs[0]=fg[0]/d; cs[1]=fg[1]/d; } r=1.0; if (fabs(fg[0])>fabs(fg[1])) r=cs[1]; else if (cs[0]!=0.0) r=1.0f/cs[0]; fg[0]=d; fg[1]=r; return; }
高斯拟合c++实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。