首页 > 代码库 > LeetCode 53. Maximum Subarray(最大的子数组)

LeetCode 53. Maximum Subarray(最大的子数组)

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

 

题目标签:Array
  这道题目给了我们一个array, 让我们找到一个连续的子数组,它的sum是最大的。题目说明有O(n) 方法和 Divide and conquer 方法。
 
  我们先来看一下O(n) 方法:
    遍历array,对于每一个数字,我们判断,(之前的sum + 这个数字) 和 (这个数字) 比大小,如果(这个数字)自己就比 (之前的sum + 这个数字) 大的话,那么说明不需要再继续加了,直接从这个数字,开始继续,因为它自己已经比之前的sum都大了。
    反过来,如果 (之前的sum + 这个数字)大于 (这个数字)就继续加下去。
    这个方法和Kadane Algorithm 差不多, Kadane 的算法是,如果之前的sum 小于0了,就重新计算sum,如果sum不小于0,那么继续加。
 
 
  接着看一下Divide and conquer 方法:
    对于任何一个array来说,有三种可能:
      1。它的maximum subarray 落在它的左边;
      2。maximum subarray 落在它的右边;
      3。maximum subarray 落在它的中间。
 
    对于第一,二种情况,利用二分法就很容易得到,base case 是如果只有一个数字了,那么就返回。
    对于第三种情况,如果落在中间,那么我们要从左右两边返回的两个 mss 中,挑出一个大的,再从 (左右中大的值) 和 (左+右)中挑出一个大的。具体看下面代码。
 
  

Java Solution 1:

Runtime beats 71.37% 

完成日期:03/28/2017

关键词:Array

关键点:基于 Kadane‘s Algorithm 改变

 

 1 public class Solution 
 2 {
 3     public int maxSubArray(int[] nums) 
 4     {
 5         //    Solution 1:  O(n)
 6         // check param validation.
 7         if(nums == null || nums.length == 0)
 8             return 0;
 9         
10         int sum = 0;
11         int max = Integer.MIN_VALUE;
12  
13         // iterate nums array.
14         for (int i = 0; i < nums.length; i++) 
15         {
16             // choose a larger one between current number or (previous sum + current number).
17             sum = Math.max(nums[i], sum + nums[i]);
18             max = Math.max(max, sum);    // choose the larger max.
19         }
20  
21         return max;
22     }
23     
24     
25     
26 }

 

Java Solution 2: 

Runtime beats 71.37% 

完成日期:03/28/2017

关键词:Array

关键点:Kadane‘s Algorithm

 

 1 public class Solution 
 2 {
 3     public int maxSubArray(int[] nums) 
 4     {
 5         int max_ending_here = 0;
 6         int max_so_far = Integer.MIN_VALUE;
 7         
 8         for(int i = 0; i < nums.length; i++)
 9         {  
10             if(max_ending_here < 0) 
11                  max_ending_here = 0;  
12             max_ending_here += nums[i];  
13             max_so_far = Math.max(max_so_far, max_ending_here);   
14         }  
15         return max_so_far; 
16     }
17     
18     
19     
20 }

 

Java Solution 3: 

Runtime beats 29.96% 

完成日期:03/29/2017

关键词:Array

关键点:Divide and Conquer

 

 1 public class Solution 
 2 {
 3     public int maxSubArray(int[] nums) 
 4     {
 5         // Solution 3: Divide and Conquer. O(nlogn)
 6         if(nums == null || nums.length == 0)
 7             return 0;
 8         
 9         
10         return Max_Subarray_Sum(nums, 0, nums.length-1);
11     }
12     
13     public int Max_Subarray_Sum(int[] nums, int left, int right)
14     {
15         if(left == right)    // base case: meaning there is only one element.
16             return nums[left];
17         
18         int middle = (left + right) / 2;    // calculate the middle one.
19         
20         // recursively call Max_Subarray_Sum to go down to base case.
21         int left_mss = Max_Subarray_Sum(nums, left, middle);    
22         int right_mss = Max_Subarray_Sum(nums, middle+1, right);
23         
24         // set up leftSum, rightSum and sum.
25         int leftSum = Integer.MIN_VALUE;
26         int rightSum = Integer.MIN_VALUE;
27         int sum = 0;
28         
29         // calculate the maximum subarray sum for right half part.
30         for(int i=middle+1; i<= right; i++)
31         {
32             sum += nums[i];
33             rightSum = Integer.max(rightSum, sum);
34         }
35         
36         sum = 0;    // reset the sum to 0.
37         
38         // calculate the maximum subarray sum for left half part.
39         for(int i=middle; i>= left; i--)
40         {
41             sum += nums[i];
42             leftSum = Integer.max(leftSum, sum);
43         }
44         
45         // choose the max between left and right from down level.
46         int res = Integer.max(left_mss, right_mss);
47         // choose the max between res and middle range.
48         
49         return Integer.max(res, leftSum + rightSum);
50         
51     }
52     
53 }

参考资料:

http://www.cnblogs.com/springfor/p/3877058.html

https://www.youtube.com/watch?v=ohHWQf1HDfU

 

LeetCode 算法题目列表 - LeetCode Algorithms Questions List

 

LeetCode 53. Maximum Subarray(最大的子数组)