首页 > 代码库 > POJ-1458 Common Subsequence
POJ-1458 Common Subsequence
Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 39851 | Accepted: 16030 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcabprogramming contest abcd mnp
Sample Output
420
大致题意:求两个字符串的最长公共子序列的长度。
思路:这是一个很经典的最长公共子序列(LCS)问题。动态转移方程式如下,设有字符串X和字符串Y,dp[i,j]表示的是X的钱i个字符与Y的钱j个字符的最长公共子序列的长度。如果X[i]==Y[j],那么这个字符与之前的LCS一定可以构成一个新的LCS;如果X[i]!=Y[j],则分别考查dp[i-1,j]和dp[i][j-1],选择其中的较大者为LCS。
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #include<cmath> 5 #include<string> 6 using namespace std; 7 const int MAX = 500; 8 int dp[MAX][MAX] ={0}; 9 int main()10 {11 int len1,len2;12 string str1,str2;13 while(cin>>str1>>str2)14 {15 len1=str1.length();16 len2=str2.length();17 for(int i=1;i<=len1;i++)18 {19 for(int j=1;j<=len2;j++)20 {21 if(str1[i-1]==str2[j-1])22 {23 dp[i][j]=dp[i-1][j-1]+1;24 }25 else26 {27 dp[i][j]=max(dp[i-1][j],dp[i][j-1]);28 }29 }30 }31 cout<<dp[len1][len2]<<endl;32 }33 return 0;34 }
POJ-1458 Common Subsequence
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。