首页 > 代码库 > 数论 UVA 11889

数论 UVA 11889

有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值。由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a,b)=a*b;

则b=lcm(a,b)*gcd(a,b)/a,b=c*gcd(a,b)/a,b/gcd(a,b)=c/a。因为c/a是b除去gcd(a,b)后的部分。若gcd(a,c/a)=1,就表明c/a就是我们要求的答案;否则,就说明c/a小于b,需要还原。还原

的过程中,首先求出gcd(a,c/a),让c/a乘上gcd(a,c/a)得到(c/a)‘,a除以gcd(a,c/a)得到a‘,然后判断gcd((c/a)‘,a‘)是否为1,如果是说明已经还原完成,得到了答案,输出答案;否则重复之前的操作

即让(c/a)‘*gcd((c/a)‘,a‘),a‘/gcd((c/a‘),a‘),在继续判断。

#include <stdio.h>
#include <stdlib.h>
int gcd(int x,int y)
{
int t,s;
while(y!=0)
{
t=x%y;
x=y;
y=t;

}
return x;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int a,c,b,t;
scanf("%d%d",&a,&c);
if(c%a==0)
{
int p;
b=c/a;
p=gcd(a,b);
if(p==1)
printf("%d\n",b);
else
{
int m,n,t;
m=a/p;
n=b*p;
p=gcd(m,n);
while(p!=1)
{
m=m/p;
n=n*p;
p=gcd(m,n);
}
printf("%d\n",n);
}
}
else
printf("NO SOLUTION\n");
}
return 0;
}

数论 UVA 11889