首页 > 代码库 > POJ 3468 A Simple Problem with Integers(线段树区间更新区间求和)

POJ 3468 A Simple Problem with Integers(线段树区间更新区间求和)

A Simple Problem with Integers
Time Limit: 5000MS Memory Limit: 131072K
Total Submissions: 67511 Accepted: 20818
Case Time Limit: 2000MS

Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 51 2 3 4 5 6 7 8 9 10Q 4 4Q 1 10Q 2 4C 3 6 3Q 2 4

Sample Output

455915

Hint

The sums may exceed the range of 32-bit integers.
 
技术分享
#include <iostream>#include <cstdio>#include <cstring>#include <string>#include <cmath>#include <vector>#include <queue>#include <map>#include <set>#include <stack>#include <algorithm>using namespace std;#define root 1,n,1#define lson l,mid,rt<<1#define rson mid+1,r,rt<<1|1#define lr rt<<1#define rr rt<<1|1typedef long long LL;const int oo = 1e9+7;const double PI = acos(-1.0);const double eps = 1e-6 ;const int N = 100010;const int mod = 2333333;int n , m ;LL sum[N<<2] , lazy[N<<2] , e[N] , tot ;void Up( int rt ) {    sum[rt] = sum[lr] + sum[rr];}void Down( int l , int r , int rt ) {    if( lazy[rt] != 0 ) {        int mid = (l+r)>>1;        sum[lr] += lazy[rt]*(mid-l+1) , sum[rr] += lazy[rt]*(r-mid);        lazy[lr] += lazy[rt] , lazy[rr] += lazy[rt];        lazy[rt] = 0 ;    }}void build( int l , int r , int rt ){    lazy[rt] = 0 ;    if( l == r ) {        sum[rt] = e[tot++];        return ;    }    int mid = (l+r)>>1;    build(lson),build(rson);    Up(rt);}void update( int l , int r , int rt , int L , int R , LL val ) {    if( L == l && r == R ) {        sum[rt] += val*(r-l+1) ;        lazy[rt] += val;        return ;    }    Down( l , r , rt );    int mid = (l+r)>>1;    if( R <= mid ) update(lson,L,R,val);    else if( L > mid ) update(rson,L,R,val);    else update(lson,L,mid,val) , update(rson,mid+1,R,val);    Up(rt);}LL query( int l , int r , int rt , int L , int R ) {    if( L == l && r == R ) {        return sum[rt];    }    Down(l,r,rt);    int mid = (l+r)>>1;    if( R <= mid ) return query(lson,L,R);    else if( L > mid ) return query(rson,L,R);    else return query(lson,L,mid) + query(rson,mid+1,R);}int main(){    #ifdef LOCAL        freopen("in.txt","r",stdin);//        freopen("out.txt","w",stdout);    #endif // LOCAL    char s[10]; int x , y ; LL c ;    while( ~scanf("%d%d",&n,&m ) ) {        tot = 0 ;        for( int i = 0 ; i < n ; ++i ) {            scanf("%I64d",&e[i]);        }        build(root);        while(m--) {            scanf("%s",s);            if( s[0] == Q ) {                scanf("%d%d",&x,&y);                printf("%I64d\n",query(root,x,y));            }            else {                scanf("%d%d%I64d",&x,&y,&c);                update(root,x,y,c);            }        }    }}
View Code

 

POJ 3468 A Simple Problem with Integers(线段树区间更新区间求和)