首页 > 代码库 > 机器学习笔记-监督学习之决策树

机器学习笔记-监督学习之决策树

0机器学习中分类和预测算法的评估:

  • 准确率
  • 速度
  • 健壮性
  • 可规模性
  • 可解释性

1决策树(判定树)的概念

  决策树是一个类似于流程图的树结构(可以是二叉树或多叉树):其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。机器学习中分类方法中的一个重要算法。

技术分享

2.熵(entropy)概念

  信息和抽象如何度量?1948年,香农提出“信息熵”的概念。

一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者是我们一无所知的事情,需要了解大量的信息==>信息量的度量就等于

3.决策树的归纳算法(ID3)

3.1选择属性判断结点

3.2信息获取量:Gain(A)=Info(D)-Info_A(D)

基本步骤:

  • 树以代表训练样本的单个结点开始(步骤1)。
  • 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  • 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  • 所有的属性都是分类的,即离散值。连续属性必须离散化。
  • 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  • 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  • 递归划分步骤仅当下列条件之一成立停止:
  • (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  • (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  • 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
  • 点样本的类分布。
  • (c) 分枝
  • test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  • 创建一个树叶(步骤12)

机器学习笔记-监督学习之决策树