首页 > 代码库 > CodeForces 711D Directed Roads (DFS判环+计数)

CodeForces 711D Directed Roads (DFS判环+计数)

题意:给定一个有向图,然后你可能改变某一些边的方向,然后就形成一种新图,让你求最多有多少种无环图。

析:假设这个图中没有环,那么有多少种呢?也就是说每一边都有两种放法,一共有2^x种,x是边数,那么如果有环呢?假设x是这个连通块的边数,

y是这个环的边数,那么就一共有2^x * (2 ^ y - 2) 种,减去这两种就是一边也不变,和所有的边都就变,这样就形成环了。

那么怎么计算呢?这个题的边很特殊,所以我们可以利用这个特征,我们在每个连通块时,用vis记录一下开始的父结点,用cnt记录每一个到每个点的深度,

然后如果产生环了,那么我们就可以很轻松的算出这个环的结点数,用当前的cnt减去就好,然后用sum记录一下环结点的总数,

最后用n减去环中的结点数,就剩下不是环的结点数了。

#pragma comment(linker, "/STACK:1024000000,1024000000")#include <cstdio>#include <string>#include <cstdlib>#include <cmath>#include <iostream>#include <cstring>#include <set>#include <queue>#include <algorithm>#include <vector>#include <map>#include <cctype>#include <cmath>#include <stack>#include <list>#include <sstream>#define freopenr freopen("in.txt", "r", stdin)#define freopenw freopen("out.txt", "w", stdout)using namespace std;typedef long long LL;typedef pair<int, int> P;const int INF = 0x3f3f3f3f;const double inf = 0x3f3f3f3f3f3f;const LL LNF = 0x3f3f3f3f3f3f3f;const double PI = acos(-1.0);const double eps = 1e-8;const int maxn = 2e5 + 5;const int mod = 1e9 + 7;const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};int n, m;const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};inline int Min(int a, int b){ return a < b ? a : b; }inline int Max(int a, int b){ return a > b ? a : b; }inline LL Min(LL a, LL b){ return a < b ? a : b; }inline LL Max(LL a, LL b){ return a > b ? a : b; }inline bool is_in(int r, int c){    return r >= 0 && r < n && c >= 0 && c < m;}int vis[maxn];int a[maxn], cnt[maxn];LL ans;int sum;LL quick_pow(LL a, LL b){    LL ans = 1;    while(b){        if(b & 1)  ans = (ans * a) % mod;        b >>= 1;        a = (a * a) % mod;    }    return ans;}void dfs(int d, int u, int fa){    vis[u] = fa;    cnt[u] = d;    if(!vis[a[u]])  dfs(d+1, a[u], fa);    else if(vis[a[u]] == fa){        sum += cnt[u]-cnt[a[u]]+1;        ans = (ans * (quick_pow(2LL, cnt[u]-cnt[a[u]]+1) - 2 + mod)) % mod;    }}int main(){    while(scanf("%d", &n) == 1){        memset(vis, 0, sizeof vis);        memset(cnt, 0, sizeof cnt);        for(int i = 1; i <= n; ++i)  scanf("%d", &a[i]);        ans = 1, sum = 0;        for(int i = 1; i <= n; ++i){            if(vis[i])  continue;            dfs(0, i, i);        }        ans = (ans * quick_pow(2LL, n-sum)) % mod;        cout << ans << endl;    }    return 0;}

 

CodeForces 711D Directed Roads (DFS判环+计数)