首页 > 代码库 > HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘
HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘
点击打开链接
Chessboard
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 335 Accepted Submission(s): 168
Problem Description
Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares tiled.
Input
There are multiple test cases in the input file.
First line contain the number of cases T (T≤10000 ).
In the next T lines contain T cases , Each case has two integers n and k. (1≤n,k≤100 )
First line contain the number of cases T (
In the next T lines contain T cases , Each case has two integers n and k. (
Output
Print the maximum number of chessboard squares tiled.
Sample Input
2 6 3 5 3
Sample Output
36 24
Source
BestCoder Round #17
用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,问正方形棋盘最多能被覆盖多少。
规律就是:如果n<k,肯定不行。
定义mod=n%k;
如果(mod<=k/2),结果为:n*n-mod*mod;
否则结果为:n*n-(k-mod)*(k-mod);
点此证明
//0MS 228K #include<stdio.h> int main() { int t,n,k; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&k); if(n<k){printf("0\n");continue;} int mod=n%k; if(mod<=k/2)printf("%d\n",n*n-mod*mod); else printf("%d\n",n*n-(k-mod)*(k-mod)); } return 0; }
HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。