首页 > 代码库 > 积分题05012014
积分题05012014
计算
\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx.}
<script id="MathJax-Element-1" type="math/tex; mode=display">\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx.}</script>
解:留数理论的一种解答:
注意到
\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} .
<script id="MathJax-Element-2" type="math/tex; mode=display">\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} .</script>
若令
\begin{align*}F\left( m \right) &= \int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {{x^2} + x + 1} \right)}}dx}\\&= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x + 1} \right)\cos \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x - 1} \right)\cos \left( {mx} \right)}}{{{x^2} - x + 1}}dx}.\end{align*}
<script id="MathJax-Element-3" type="math/tex; mode=display">\begin{align*}F\left( m \right) &= \int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {{x^2} + x + 1} \right)}}dx}\\&= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x + 1} \right)\cos \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x - 1} \right)\cos \left( {mx} \right)}}{{{x^2} - x + 1}}dx}.\end{align*}</script>
\begin{align*} \Rightarrow F‘\left( m \right) &= - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} + x} \right)\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} + \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} - x} \right)sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx} \\&= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx}\end{align*}
<script id="MathJax-Element-4" type="math/tex; mode=display">\begin{align*} \Rightarrow F‘\left( m \right) &= - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} + x} \right)\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} + \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} - x} \right)sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx} \\&= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx}\end{align*}</script>
再令
I = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx} ,T = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} .
<script id="MathJax-Element-5" type="math/tex; mode=display">I = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx} ,T = \frac{1}{2}\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} .</script>
则
I = {\mathop{\rm Im}\nolimits} T.
<script id="MathJax-Element-6" type="math/tex; mode=display">I = {\mathop{\rm Im}\nolimits} T.</script>
即\displaystyle T<script id="MathJax-Element-7" type="math/tex">\displaystyle T</script>的虚部为\displaystyle I<script id="MathJax-Element-8" type="math/tex">\displaystyle I</script>.因此,为了计算积分\displaystyle I<script id="MathJax-Element-9" type="math/tex">\displaystyle I</script>,只需求出积分
\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx}
<script id="MathJax-Element-10" type="math/tex; mode=display">\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} </script>
即可.先求
\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} .
<script id="MathJax-Element-11" type="math/tex; mode=display">\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} .</script>
求得辅助函数
\frac{{P\left( z \right)}}{{Q\left( z \right)}}{e^{i\left( {mz} \right)}} = \frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}
<script id="MathJax-Element-12" type="math/tex; mode=display">\frac{{P\left( z \right)}}{{Q\left( z \right)}}{e^{i\left( {mz} \right)}} = \frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}</script>
在上半平面的奇点只有点\displaystyle \alpha = - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i<script id="MathJax-Element-13" type="math/tex">\displaystyle \alpha = - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i</script>(另一个奇点为\displaystyle \beta = - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i<script id="MathJax-Element-14" type="math/tex">\displaystyle \beta = - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i</script>).于是我们有
\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} = 2\pi i \cdot {\mathop{\rm Re}\nolimits} s\left( {\frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right).
<script id="MathJax-Element-15" type="math/tex; mode=display">\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} = 2\pi i \cdot {\mathop{\rm Re}\nolimits} s\left( {\frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right).</script>
由于
{\mathop{\rm Re}\nolimits} s\left( {\frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right) = \mathop {\lim }\limits_{z \to \alpha } \left( {z - \alpha } \right)\frac{{{e^{i\left( {mz} \right)}}}}{{\left( {z - \alpha } \right)\left( {z - \beta } \right)}} = \frac{{{e^{ - \frac{{\sqrt 3 }}{2}m - \frac{1}{2}im}}}}{{\sqrt 3 i}}.
<script id="MathJax-Element-16" type="math/tex; mode=display">{\mathop{\rm Re}\nolimits} s\left( {\frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right) = \mathop {\lim }\limits_{z \to \alpha } \left( {z - \alpha } \right)\frac{{{e^{i\left( {mz} \right)}}}}{{\left( {z - \alpha } \right)\left( {z - \beta } \right)}} = \frac{{{e^{ - \frac{{\sqrt 3 }}{2}m - \frac{1}{2}im}}}}{{\sqrt 3 i}}.</script>
\Rightarrow \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m - \frac{1}{2}im}} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} - i\sin \frac{m}{2}} \right).
<script id="MathJax-Element-17" type="math/tex; mode=display"> \Rightarrow \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m - \frac{1}{2}im}} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} - i\sin \frac{m}{2}} \right).</script>
同理亦得
\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + i\sin \frac{m}{2}} \right).
<script id="MathJax-Element-18" type="math/tex; mode=display">\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} = \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + i\sin \frac{m}{2}} \right).</script>
\Rightarrow \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} = - \frac{{4\pi i}}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \frac{m}{2}
<script id="MathJax-Element-19" type="math/tex; mode=display"> \Rightarrow \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} = - \frac{{4\pi i}}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \frac{m}{2}</script>
故
F‘\left( m \right) = I = {\mathop{\rm Im}\nolimits} T = {\mathop{\rm Im}\nolimits} \frac{1}{2}\left( {\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} } \right) = - \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \frac{m}{2}.
<script id="MathJax-Element-20" type="math/tex; mode=display">F‘\left( m \right) = I = {\mathop{\rm Im}\nolimits} T = {\mathop{\rm Im}\nolimits} \frac{1}{2}\left( {\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} } \right) = - \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \frac{m}{2}.</script>
\Rightarrow F\left( m \right) = - \frac{{2\pi }}{{\sqrt 3 }} \cdot \left[ {\frac{{{e^{ - \frac{{\sqrt 3 }}{2}m}}}}{2}\left( { - \cos \frac{m}{2} - \sqrt 3 \sin \frac{m}{2}} \right)} \right] = \frac{\pi }{{\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right).
<script id="MathJax-Element-21" type="math/tex; mode=display"> \Rightarrow F\left( m \right) = - \frac{{2\pi }}{{\sqrt 3 }} \cdot \left[ {\frac{{{e^{ - \frac{{\sqrt 3 }}{2}m}}}}{2}\left( { - \cos \frac{m}{2} - \sqrt 3 \sin \frac{m}{2}} \right)} \right] = \frac{\pi }{{\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right).</script>
\begin{align*} \Rightarrow \int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} &= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}F\left( m \right) \\&= \frac{\pi }{{2\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) = \frac{\pi }{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \left( {\frac{m}{2} + \frac{\pi }{6}} \right).\end{align*}
<script id="MathJax-Element-22" type="math/tex; mode=display">\begin{align*} \Rightarrow \int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} &= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}F\left( m \right) \\&= \frac{\pi }{{2\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) = \frac{\pi }{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \left( {\frac{m}{2} + \frac{\pi }{6}} \right).\end{align*}</script>
另解:由Fourier变换公式,我们有
\begin{align*}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) &= \frac{2}{\pi }\int_0^\infty {\cos \left( {mx} \right)dx} \int_0^\infty {{e^{ - \frac{{\sqrt 3 }}{2}u}}\left( {\cos \frac{u}{2} + \sqrt 3 \sin \frac{u}{2}} \right)\cos \left( {ux} \right)du} \\&= \frac{{2\sqrt 3 }}{\pi }\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx}.\end{align*}
<script id="MathJax-Element-23" type="math/tex; mode=display">\begin{align*}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) &= \frac{2}{\pi }\int_0^\infty {\cos \left( {mx} \right)dx} \int_0^\infty {{e^{ - \frac{{\sqrt 3 }}{2}u}}\left( {\cos \frac{u}{2} + \sqrt 3 \sin \frac{u}{2}} \right)\cos \left( {ux} \right)du} \\&= \frac{{2\sqrt 3 }}{\pi }\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx}.\end{align*}</script>
立得
\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{\pi }{{2\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right){\rm{ = }}\frac{\pi }{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \left( {\frac{m}{2} + \frac{\pi }{6}} \right).
<script id="MathJax-Element-24" type="math/tex; mode=display">\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{\pi }{{2\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right){\rm{ = }}\frac{\pi }{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin \left( {\frac{m}{2} + \frac{\pi }{6}} \right).</script>
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。