首页 > 代码库 > 【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理
【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理
干货!详述Python NLTK下如何使用stanford NLP工具包
作者:白宁超
2016年11月6日19:28:43
摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Speech tag, POS-tag)、命名实体识别(Named Entity Recognition, NER)、句法分析(Syntactic Parse)等各项 NLP 领域的功能。而Stanford NLP 是由斯坦福大学的 NLP 小组开源的 Java 实现的 NLP 工具包,同样对 NLP 领域的各个问题提供了解决办法。斯坦福大学的 NLP 小组是世界知名的研究小组,能将 NLTK 和 Stanford NLP 这两个工具包结合起来使用,那对于自然语言开发者是再好不过的!在 2004 年 Steve Bird 在 NLTK 中加上了对 Stanford NLP 工具包的支持,通过调用外部的 jar 文件来使用 Stanford NLP 工具包的功能。本分析显得非常方便好用。本文主要介绍NLTK(Natural language Toolkit)下配置安装Stanford NLP ,以及对Standford NLP核心模块进行演示,使读者简单易懂的学习本章知识,后续会继续采用大秦帝国语料对分词、词性标注、命名实体识别、句法分析、句法依存分析进行详细演示。关于python基础知识,可以参看【Python五篇慢慢弹】系列文章(本文原创编著,转载注明出处:干货!详述Python NLTK下如何使用stanford NLP工具包)
目录
Python NLTK 走进大秦帝国
干货!详述Python NLTK下如何使用stanford NLP工具包
1 NLTK和StandfordNLP简介
NLTK:由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Speech tag, POS-tag)、命名实体识别(Named Entity Recognition, NER)、句法分析(Syntactic Parse)等各项 NLP 领域的功能。
Stanford NLP:由斯坦福大学的 NLP 小组开源的 Java 实现的 NLP 工具包,同样对 NLP 领域的各个问题提供了解决办法。斯坦福大学的 NLP 小组是世界知名的研究小组,能将 NLTK 和 Stanford NLP 这两个工具包结合起来使用,那对于自然语言开发者是再好不过的!在 2004 年 Steve Bird 在 NLTK 中加上了对 Stanford NLP 工具包的支持,通过调用外部的 jar 文件来使用 Stanford NLP 工具包的功能。本分析显得非常方便好用。
本文在主要介绍NLTK 中提供 Stanford NLP 中的以下几个功能:
- 中英文分词: StanfordTokenizer
- 中英文词性标注: StanfordPOSTagger
- 中英文命名实体识别: StanfordNERTagger
- 中英文句法分析: StanfordParser
- 中英文依存句法分析: StanfordDependencyParser, StanfordNeuralDependencyParser
2 安装配置过程中注意事项
本文以Python 3.5.2和java version "1.8.0_111"版本进行配置,具体安装需要注意以下几点:
- Stanford NLP 工具包需要 Java 8 及之后的版本,如果出错请检查 Java 版本
- 本文的配置都是以 Stanford NLP 3.6.0 为例,如果使用的是其他版本,请注意替换相应的文件名
- 本文的配置过程以 NLTK 3.2 为例,如果使用 NLTK 3.1,需要注意该旧版本中 StanfordSegmenter 未实现,其余大致相同
- 下面的配置过程是具体细节可以参照:http://nlp.stanford.edu/software/
3 StandfordNLP必要工具包下载
必要包下载:只需要下载以下两个文件就够了,stanfordNLTK文件里面就是StanfordNLP工具包在NLTK中所依赖的jar包和相关文件
- stanfordNLTK :自己将所有需要的包和相关文件已经打包在一起了,下面有具体讲解
- Jar1.8 :如果你本机是Java 8以上版本,可以不用下载了
StanfordNLTK目录结构如下:(从各个压缩文件已经提取好了,如果读者感兴趣,下面有各个功能的源码文件)
- 分词依赖:stanford-segmenter.jar、 slf4j-api.jar、data文件夹相关子文件
- 命名实体识别依赖:classifiers、stanford-ner.jar
- 词性标注依赖:models、stanford-postagger.jar
- 句法分析依赖:stanford-parser.jar、stanford-parser-3.6.0-models.jar、classifiers
- 依存语法分析依赖:stanford-parser.jar、stanford-parser-3.6.0-models.jar、classifiers
压缩包下载和源码分析:
- 分词压缩包:StanfordSegmenter和StanfordTokenizer:下载stanford-segmenter-2015-12-09.zip (version 3.6.0) 解压获取目录中的 stanford-segmenter-3.6.0.jar 拷贝为 stanford-segmenter.jar和 slf4j-api.jar
- 词性标注压缩包:下载stanford-postagger-full-2015-12-09.zip (version 3.6.0) 解压获取stanford-postagger.jar
- 命名实体识别压缩包:下载stanford-ner-2015-12-09.zip (version 3.6.0) ,将解压获取stanford-ner.jar和classifiers文件
- 句法分析、句法依存分析:下载stanford-parser-full-2015-12-09.zip (version 3.6.0) 解压获取stanford-parser.jar 和 stanford-parser-3.6.0-models.jar
4 StandfordNLP相关核心操作
4.1 分词
StanfordSegmenter 中文分词:下载52nlp改过的NLTK包nltk-develop ,解压后将其拷贝到你的python目录下,进去E:\Python\nltk-develop采用python 编辑器打开setup.py文件,F5运行,输入以下代码:
>>> from nltk.tokenize.stanford_segmenter import StanfordSegmenter>>> segmenter = StanfordSegmenter( path_to_jar=r"E:\tools\stanfordNLTK\jar\stanford-segmenter.jar", path_to_slf4j=r"E:\tools\stanfordNLTK\jar\slf4j-api.jar", path_to_sihan_corpora_dict=r"E:\tools\stanfordNLTK\jar\data", path_to_model=r"E:\tools\stanfordNLTK\jar\data\pku.gz", path_to_dict=r"E:\tools\stanfordNLTK\jar\data\dict-chris6.ser.gz")>>> str="我在博客园开了一个博客,我的博客名叫伏草惟存,写了一些自然语言处理的文章。">>> result = segmenter.segment(str)>>> result
执行结果:
程序解读:StanfordSegmenter 的初始化参数说明:
- path_to_jar: 用来定位jar包,本程序分词依赖stanford-segmenter.jar(注: 其他所有 Stanford NLP 接口都有 path_to_jar 这个参数。)
- path_to_slf4j: 用来定位slf4j-api.jar作用于分词
- path_to_sihan_corpora_dict: 设定为 stanford-segmenter-2015-12-09.zip 解压后目录中的 data 目录, data 目录下有两个可用模型 pkg.gz 和 ctb.gz 需要注意的是,使用 StanfordSegmenter 进行中文分词后,其返回结果并不是 list ,而是一个字符串,各个汉语词汇在其中被空格分隔开。
StanfordTokenizer 英文分词 :相关参考资料
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 25 2016, 22:01:18) [MSC v.1900 32 bit (Intel)] on win32Type "copyright", "credits" or "license()" for more information.>>> from nltk.tokenize import StanfordTokenizer>>> tokenizer = StanfordTokenizer(path_to_jar=r"E:\tools\stanfordNLTK\jar\stanford-parser.jar")>>> sent = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.">>> print(tokenizer.tokenize(sent))[‘Good‘, ‘muffins‘, ‘cost‘, ‘$‘, ‘3.88‘, ‘in‘, ‘New‘, ‘York‘, ‘.‘, ‘Please‘, ‘buy‘, ‘me‘, ‘two‘, ‘of‘, ‘them‘, ‘.‘, ‘Thanks‘, ‘.‘]>>>
执行结果:
4.2 命名实体识别
StanfordNERTagger 英文命名实体识别
>>> from nltk.tag import StanfordNERTagger>>> eng_tagger = StanfordNERTagger(model_filename=r‘E:\tools\stanfordNLTK\jar\classifiers\english.all.3class.distsim.crf.ser.gz‘,path_to_jar=r‘E:\tools\stanfordNLTK\jar\stanford-ner.jar‘)>>> print(eng_tagger.tag(‘Rami Eid is studying at Stony Brook University in NY‘.split()))[(‘Rami‘, ‘PERSON‘), (‘Eid‘, ‘PERSON‘), (‘is‘, ‘O‘), (‘studying‘, ‘O‘), (‘at‘, ‘O‘), (‘Stony‘, ‘ORGANIZATION‘), (‘Brook‘, ‘ORGANIZATION‘), (‘University‘, ‘ORGANIZATION‘), (‘in‘, ‘O‘), (‘NY‘, ‘O‘)]
运行结果:
StanfordNERTagger 中文命名实体识别
>>> result‘四川省 成都 信息 工程 大学 我 在 博客 园 开 了 一个 博客 , 我 的 博客 名叫 伏 草 惟 存 , 写 了 一些 自然语言 处理 的 文章 。\r\n‘>>> from nltk.tag import StanfordNERTagger>>> chi_tagger = StanfordNERTagger(model_filename=r‘E:\tools\stanfordNLTK\jar\classifiers\chinese.misc.distsim.crf.ser.gz‘,path_to_jar=r‘E:\tools\stanfordNLTK\jar\stanford-ner.jar‘)>>> for word, tag in chi_tagger.tag(result.split()): print(word,tag)
运行结果:
4.3 词性标注
StanfordPOSTagger 英文词性标注
>>> from nltk.tag import StanfordPOSTagger>>> eng_tagger = StanfordPOSTagger(model_filename=r‘E:\tools\stanfordNLTK\jar\models\english-bidirectional-distsim.tagger‘,path_to_jar=r‘E:\tools\stanfordNLTK\jar\stanford-postagger.jar‘)>>> print(eng_tagger.tag(‘What is the airspeed of an unladen swallow ?‘.split()))
运行结果:
StanfordPOSTagger 中文词性标注
>>> from nltk.tag import StanfordPOSTagger>>> chi_tagger = StanfordPOSTagger(model_filename=r‘E:\tools\stanfordNLTK\jar\models\chinese-distsim.tagger‘,path_to_jar=r‘E:\tools\stanfordNLTK\jar\stanford-postagger.jar‘)>>> result‘四川省 成都 信息 工程 大学 我 在 博客 园 开 了 一个 博客 , 我 的 博客 名叫 伏 草 惟 存 , 写 了 一些 自然语言 处理 的 文章 。\r\n‘>>> print(chi_tagger.tag(result.split()))
运行结果:
4.4 句法分析:参考文献资料
StanfordParser英文语法分析
>>> from nltk.parse.stanford import StanfordParser>>> eng_parser = StanfordParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\englishPCFG.ser.gz")>>> print(list(eng_parser.parse("the quick brown fox jumps over the lazy dog".split())))
运行结果:
StanfordParser 中文句法分析
>>> from nltk.parse.stanford import StanfordParser>>> chi_parser = StanfordParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\chinesePCFG.ser.gz")>>> sent = u‘北海 已 成为 中国 对外开放 中 升起 的 一 颗 明星‘>>> print(list(chi_parser.parse(sent.split())))
运行结果:
4.5 依存句法分析
StanfordDependencyParser 英文依存句法分析
>>> from nltk.parse.stanford import StanfordDependencyParser>>> eng_parser = StanfordDependencyParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\englishPCFG.ser.gz")>>> res = list(eng_parser.parse("the quick brown fox jumps over the lazy dog".split()))>>> for row in res[0].triples(): print(row)
运行结果:
StanfordDependencyParser 中文依存句法分析
>>> from nltk.parse.stanford import StanfordDependencyParser>>> chi_parser = StanfordDependencyParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\chinesePCFG.ser.gz")>>> res = list(chi_parser.parse(u‘四川 已 成为 中国 西部 对外开放 中 升起 的 一 颗 明星‘.split()))>>> for row in res[0].triples(): print(row)
运行结果:
5 参考文献和知识扩展
- NLTK官方网站
- NLTK的API
- NLTK中使用斯坦福中文分词器
- GitHub上NLTK源码
【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理