首页 > 代码库 > POJ 2955 Brackets

POJ 2955 Brackets

Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2938 Accepted: 1516

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))()()()([]]))[)(([][][)end

Sample Output

66406

Source

Stanford Local 2004
 
解题:


 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <vector> 6 #include <climits> 7 #include <algorithm> 8 #include <cmath> 9 #define LL long long10 using namespace std;11 const int maxn = 102;12 char str[maxn<<1];13 int dp[maxn][maxn];14 int main() {15     int i,j,k,len,t,ans;16     while(gets(str)&&strcmp(str,"end")) {17         len = strlen(str);18         memset(dp,0,sizeof(dp));19         ans = 0;20         for(i = 0; i < len; i++) {21             for(j = 0,k = i; k < len; k++,j++) {22                 if((str[j] == ( && str[k] == )) || (str[j] == [ && str[k] == ])) {23                     dp[j][k] = dp[j+1][k-1] + 2;24                 }25                 for(t = j+1; t < k; t++)26                     if(dp[j][t]+dp[t][k] > dp[j][k]) dp[j][k] = dp[j][t]+dp[t][k];27                 if(dp[j][k] > ans) ans = dp[j][k];28             }29 30         }31         printf("%d\n",ans);32     }33     return 0;34 }
View Code