首页 > 代码库 > Android之rild进程启动源码分析

Android之rild进程启动源码分析

Android 电话系统框架介绍

在android系统中rild运行在AP上,AP上的应用通过rild发送AT指令给BP,BP接收到信息后又通过rild传送给AP。AP与BP之间有两种通信方式:

 

1.Solicited Response:Ap向Bp发送请求,Bp给Ap发送回复,该类型的AT指令及其回调函数以数组的形式存放在Ril_commands.h文件中:

    {数组中的索引号,请求回调函数,响应回调函数}

 

[plain] view plaincopy
 
  1. {0, NULL, NULL},                   //none  
  2. {RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},  
  3. {RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},  
  4. {RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},  
  5. {RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},  
  6. {RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},  
  7. {RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},  
  8. {RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},  
  9. {RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts},  
  10. {RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList},  
  11. {RIL_REQUEST_DIAL, dispatchDial, responseVoid},  
  12. {RIL_REQUEST_GET_IMSI, dispatchStrings, responseString},  
  13. {RIL_REQUEST_HANGUP, dispatchInts, responseVoid},  
  14. {RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid},  
  15. {RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND, dispatchVoid, responseVoid},  
  16. {RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE, dispatchVoid, responseVoid},  
  17. {RIL_REQUEST_CONFERENCE, dispatchVoid, responseVoid},  
  18. {RIL_REQUEST_UDUB, dispatchVoid, responseVoid},  
  19. {RIL_REQUEST_LAST_CALL_FAIL_CAUSE, dispatchVoid, responseInts},  
  20. {RIL_REQUEST_SIGNAL_STRENGTH, dispatchVoid, responseRilSignalStrength},  
  21. {RIL_REQUEST_VOICE_REGISTRATION_STATE, dispatchVoid, responseStrings},  
  22. {RIL_REQUEST_DATA_REGISTRATION_STATE, dispatchVoid, responseStrings},  
  23. {RIL_REQUEST_OPERATOR, dispatchVoid, responseStrings},  
  24. {RIL_REQUEST_RADIO_POWER, dispatchInts, responseVoid},  
  25. {RIL_REQUEST_DTMF, dispatchString, responseVoid},  
  26. {RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS},  
  27. {RIL_REQUEST_SEND_SMS_EXPECT_MORE, dispatchStrings, responseSMS},  
  28. {RIL_REQUEST_SETUP_DATA_CALL, dispatchDataCall, responseSetupDataCall},  
  29. {RIL_REQUEST_SIM_IO, dispatchSIM_IO, responseSIM_IO},  
  30. {RIL_REQUEST_SEND_USSD, dispatchString, responseVoid},  
  31. {RIL_REQUEST_CANCEL_USSD, dispatchVoid, responseVoid},  
  32. {RIL_REQUEST_GET_CLIR, dispatchVoid, responseInts},  
  33. {RIL_REQUEST_SET_CLIR, dispatchInts, responseVoid},  
  34. {RIL_REQUEST_QUERY_CALL_FORWARD_STATUS, dispatchCallForward, responseCallForwards},  
  35. {RIL_REQUEST_SET_CALL_FORWARD, dispatchCallForward, responseVoid},  
  36. {RIL_REQUEST_QUERY_CALL_WAITING, dispatchInts, responseInts},  
  37. {RIL_REQUEST_SET_CALL_WAITING, dispatchInts, responseVoid},  
  38. {RIL_REQUEST_SMS_ACKNOWLEDGE, dispatchInts, responseVoid},  
  39. {RIL_REQUEST_GET_IMEI, dispatchVoid, responseString},  
  40. {RIL_REQUEST_GET_IMEISV, dispatchVoid, responseString},  
  41. {RIL_REQUEST_ANSWER,dispatchVoid, responseVoid},  
  42. {RIL_REQUEST_DEACTIVATE_DATA_CALL, dispatchStrings, responseVoid},  
  43. {RIL_REQUEST_QUERY_FACILITY_LOCK, dispatchStrings, responseInts},  
  44. {RIL_REQUEST_SET_FACILITY_LOCK, dispatchStrings, responseInts},  
  45. {RIL_REQUEST_CHANGE_BARRING_PASSWORD, dispatchStrings, responseVoid},  
  46. {RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE, dispatchVoid, responseInts},  
  47. {RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, dispatchVoid, responseVoid},  
  48. {RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL, dispatchString, responseVoid},  
  49. {RIL_REQUEST_QUERY_AVAILABLE_NETWORKS , dispatchVoid, responseStrings},  
  50. {RIL_REQUEST_DTMF_START, dispatchString, responseVoid},  
  51. {RIL_REQUEST_DTMF_STOP, dispatchVoid, responseVoid},  
  52. {RIL_REQUEST_BASEBAND_VERSION, dispatchVoid, responseString},  
  53. {RIL_REQUEST_SEPARATE_CONNECTION, dispatchInts, responseVoid},  
  54. {RIL_REQUEST_SET_MUTE, dispatchInts, responseVoid},  
  55. {RIL_REQUEST_GET_MUTE, dispatchVoid, responseInts},  
  56. {RIL_REQUEST_QUERY_CLIP, dispatchVoid, responseInts},  
  57. {RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE, dispatchVoid, responseInts},  
  58. {RIL_REQUEST_DATA_CALL_LIST, dispatchVoid, responseDataCallList},  
  59. {RIL_REQUEST_RESET_RADIO, dispatchVoid, responseVoid},  
  60. {RIL_REQUEST_OEM_HOOK_RAW, dispatchRaw, responseRaw},  
  61. {RIL_REQUEST_OEM_HOOK_STRINGS, dispatchStrings, responseStrings},  
  62. {RIL_REQUEST_SCREEN_STATE, dispatchInts, responseVoid},  
  63. {RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION, dispatchInts, responseVoid},  
  64. {RIL_REQUEST_WRITE_SMS_TO_SIM, dispatchSmsWrite, responseInts},  
  65. {RIL_REQUEST_DELETE_SMS_ON_SIM, dispatchInts, responseVoid},  
  66. {RIL_REQUEST_SET_BAND_MODE, dispatchInts, responseVoid},  
  67. {RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE, dispatchVoid, responseInts},  
  68. {RIL_REQUEST_STK_GET_PROFILE, dispatchVoid, responseString},  
  69. {RIL_REQUEST_STK_SET_PROFILE, dispatchString, responseVoid},  
  70. {RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND, dispatchString, responseString},  
  71. {RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE, dispatchString, responseVoid},  
  72. {RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, dispatchInts, responseVoid},  
  73. {RIL_REQUEST_EXPLICIT_CALL_TRANSFER, dispatchVoid, responseVoid},  
  74. {RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE, dispatchInts, responseVoid},  
  75. {RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE, dispatchVoid, responseInts},  
  76. {RIL_REQUEST_GET_NEIGHBORING_CELL_IDS, dispatchVoid, responseCellList},  
  77. {RIL_REQUEST_SET_LOCATION_UPDATES, dispatchInts, responseVoid},  
  78. {RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE, dispatchInts, responseVoid},  
  79. {RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE, dispatchInts, responseVoid},  
  80. {RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE, dispatchVoid, responseInts},  
  81. {RIL_REQUEST_SET_TTY_MODE, dispatchInts, responseVoid},  
  82. {RIL_REQUEST_QUERY_TTY_MODE, dispatchVoid, responseInts},  
  83. {RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE, dispatchInts, responseVoid},  
  84. {RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE, dispatchVoid, responseInts},  
  85. {RIL_REQUEST_CDMA_FLASH, dispatchString, responseVoid},  
  86. {RIL_REQUEST_CDMA_BURST_DTMF, dispatchStrings, responseVoid},  
  87. {RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY, dispatchString, responseVoid},  
  88. {RIL_REQUEST_CDMA_SEND_SMS, dispatchCdmaSms, responseSMS},  
  89. {RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE, dispatchCdmaSmsAck, responseVoid},  
  90. {RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseGsmBrSmsCnf},  
  91. {RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG, dispatchGsmBrSmsCnf, responseVoid},  
  92. {RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},  
  93. {RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseCdmaBrSmsCnf},  
  94. {RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG, dispatchCdmaBrSmsCnf, responseVoid},  
  95. {RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},  
  96. {RIL_REQUEST_CDMA_SUBSCRIPTION, dispatchVoid, responseStrings},  
  97. {RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM, dispatchRilCdmaSmsWriteArgs, responseInts},  
  98. {RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM, dispatchInts, responseVoid},  
  99. {RIL_REQUEST_DEVICE_IDENTITY, dispatchVoid, responseStrings},  
  100. {RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE, dispatchVoid, responseVoid},  
  101. {RIL_REQUEST_GET_SMSC_ADDRESS, dispatchVoid, responseString},  
  102. {RIL_REQUEST_SET_SMSC_ADDRESS, dispatchString, responseVoid},  
  103. {RIL_REQUEST_REPORT_SMS_MEMORY_STATUS, dispatchInts, responseVoid},  
  104. {RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING, dispatchVoid, responseVoid},  
  105. {RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE, dispatchCdmaSubscriptionSource, responseInts},  
  106. {RIL_REQUEST_ISIM_AUTHENTICATION, dispatchString, responseString},  
  107. {RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU, dispatchStrings, responseVoid},  
  108. {RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS, dispatchString, responseSIM_IO},  
  109. {RIL_REQUEST_VOICE_RADIO_TECH, dispatchVoiceRadioTech, responseInts},  



 

2.unSolicited Response:Bp主动给Ap发送事件,该类型的AT指令及其回调函数以数组的形式存放在ril_unsol_commands.h文件中:

    {数组中的索引号,响应回调函数,类型}

 

[plain] view plaincopy
 
  1. {RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, responseVoid, WAKE_PARTIAL},  
  2. {RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, responseVoid, WAKE_PARTIAL},  
  3. {RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, responseVoid, WAKE_PARTIAL},  
  4. {RIL_UNSOL_RESPONSE_NEW_SMS, responseString, WAKE_PARTIAL},  
  5. {RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT, responseString, WAKE_PARTIAL},  
  6. {RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM, responseInts, WAKE_PARTIAL},  
  7. {RIL_UNSOL_ON_USSD, responseStrings, WAKE_PARTIAL},  
  8. {RIL_UNSOL_ON_USSD_REQUEST, responseVoid, DONT_WAKE},  
  9. {RIL_UNSOL_NITZ_TIME_RECEIVED, responseString, WAKE_PARTIAL},  
  10. {RIL_UNSOL_SIGNAL_STRENGTH, responseRilSignalStrength, DONT_WAKE},  
  11. {RIL_UNSOL_DATA_CALL_LIST_CHANGED, responseDataCallList, WAKE_PARTIAL},  
  12. {RIL_UNSOL_SUPP_SVC_NOTIFICATION, responseSsn, WAKE_PARTIAL},  
  13. {RIL_UNSOL_STK_SESSION_END, responseVoid, WAKE_PARTIAL},  
  14. {RIL_UNSOL_STK_PROACTIVE_COMMAND, responseString, WAKE_PARTIAL},  
  15. {RIL_UNSOL_STK_EVENT_NOTIFY, responseString, WAKE_PARTIAL},  
  16. {RIL_UNSOL_STK_CALL_SETUP, responseInts, WAKE_PARTIAL},  
  17. {RIL_UNSOL_SIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},  
  18. {RIL_UNSOL_SIM_REFRESH, responseSimRefresh, WAKE_PARTIAL},  
  19. {RIL_UNSOL_CALL_RING, responseCallRing, WAKE_PARTIAL},  
  20. {RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, responseVoid, WAKE_PARTIAL},  
  21. {RIL_UNSOL_RESPONSE_CDMA_NEW_SMS, responseCdmaSms, WAKE_PARTIAL},  
  22. {RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS, responseRaw, WAKE_PARTIAL},  
  23. {RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},  
  24. {RIL_UNSOL_RESTRICTED_STATE_CHANGED, responseInts, WAKE_PARTIAL},  
  25. {RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},  
  26. {RIL_UNSOL_CDMA_CALL_WAITING, responseCdmaCallWaiting, WAKE_PARTIAL},  
  27. {RIL_UNSOL_CDMA_OTA_PROVISION_STATUS, responseInts, WAKE_PARTIAL},  
  28. {RIL_UNSOL_CDMA_INFO_REC, responseCdmaInformationRecords, WAKE_PARTIAL},  
  29. {RIL_UNSOL_OEM_HOOK_RAW, responseRaw, WAKE_PARTIAL},  
  30. {RIL_UNSOL_RINGBACK_TONE, responseInts, WAKE_PARTIAL},  
  31. {RIL_UNSOL_RESEND_INCALL_MUTE, responseVoid, WAKE_PARTIAL},  
  32. {RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, responseInts, WAKE_PARTIAL},  
  33. {RIL_UNSOL_CDMA_PRL_CHANGED, responseInts, WAKE_PARTIAL},  
  34. {RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},  
  35. {RIL_UNSOL_RIL_CONNECTED, responseInts, WAKE_PARTIAL},  
  36. {RIL_UNSOL_VOICE_RADIO_TECH_CHANGED, responseInts, WAKE_PARTIAL},  

 

 

 

不同手机厂商使用的AT命令不完全相同,为了保密,AP与BP之间通过各厂商自己的相关动态库来通信。

 

RIL模块由rild守护进程、libril.so、librefrence.so三部分组成:

  1.rild模块被编译为一个可执行文件,实现一个main函数作为整个ril模块的入口点。在初始化时使用dlopen打开librefrence_ril.so,从中取出并执行RIL_Init函数,得到RIL_RadioFunctions指针,通过RIL_register()函数注册到libril.so库中,其源码结构如下:

 

 2.libril.so是共享库,主要负责同上层的通信工作,接收ril的请求,并传递给librefrence_ril.so,同时将librefrence_ril.so返回的消息送给调用进程,源码结构如下所示:

 

3.librefrence_ril.so是由各手机厂商自己实现,在rild进程运行中通过dlopen方式加载,主要负责跟modem硬件通信,转换来自libril.so的请求为AT命令,同时监听Modem的反馈信息给libril.so

 

Android的电话系统主要分为三个部分,java层的各种电话相关应用,java层的Phone Service,主要为上层提供API,同时与native进行通信,可以看做为电话系统的客户端,native层的电话服务进程RILD,负责为上层提供各种电话功能服务,直接与modem进行交互:

Android电话系统设计框架图:

 

由于Android 开发者使用的Modem 是不一样的,各种指令格式,初始化序列都可能不一样,所以为了消除这些差别,Android 设计者将ril 做了一个抽象,使用一个虚拟电话的概念,不同modem相关的AT指令或者通信协议编译成相应的动态链接库.so文件,Rild 是具体的AT 指令合成者和应答解析者。

 

Android电话系统代码结构图:

 

RILD框架设计

在android的电话系统中,在native层实现了电话服务的服务端,由RILD服务与modem的交互,在java层实现电话的客户端,本文主要介绍电话系统的服务端RILD进程,以下是RILD的设计框架图:

 

RILD源码分析

接下来通过源码对RILD的整个框架进行详细介绍。

在kernel启动完成后,将启动第一个应用进程Init进程,在android之Init进程启动过程源码分析一文中对init进程的启动流程进行了详细的介绍。init进程在启动过程中将读取init.rc文件来启动一些重量级的native服务,rild进程就是通过配置在init.rc中来启动的。

 

[plain] view plaincopy
 
  1. service ril-daemon /system/bin/rild  
  2.     class main  
  3.     socket rild stream 660 root radio  
  4.     socket rild-debug stream 660 radio system  
  5.     user root  
  6.     group radio cache inet misc audio sdcard_rw log  

 

RILD进程入口函数分析

 

接下来给出的是RILD进程启动的时序图:

 

hardware\ril\rild\rild.c

 

[cpp] view plaincopy
 
  1. int main(int argc, char **argv)  
  2. {  
  3.     const char * rilLibPath = NULL;  
  4.     char **rilArgv;  
  5.     void *dlHandle;  
  6.     const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **);  
  7.     const RIL_RadioFunctions *funcs;  
  8.     char libPath[PROPERTY_VALUE_MAX];  
  9.     unsigned char hasLibArgs = 0;  
  10.     int i;  
  11.   umask(S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH | S_IWOTH | S_IXOTH);  
  12.   //rild启动无参数  
  13.     for (i = 1; i < argc ;) {  
  14.         if (0 == strcmp(argv[i], "-l") && (argc - i > 1)) {  
  15.             rilLibPath = argv[i + 1];  
  16.             i += 2;  
  17.         } else if (0 == strcmp(argv[i], "--")) {  
  18.             i++;  
  19.             hasLibArgs = 1;  
  20.             break;  
  21.         } else {  
  22.             usage(argv[0]);  
  23.         }  
  24.     }  
  25.   if (rilLibPath == NULL) {  
  26.       //通过Android属性系统读取属性"rild.libpath"的值,即lib库的存放路径  
  27.         if ( 0 == property_get(LIB_PATH_PROPERTY, libPath, NULL)) {  
  28.             goto done;  
  29.         } else {  
  30.             rilLibPath = libPath;  
  31.         }  
  32.   }  
  33. ##################################################################################  
  34.                             判断是否为模拟器  
  35. ##################################################################################  
  36. #if 1  
  37.     {  
  38.         static char*  arg_overrides[3];  
  39.         static char   arg_device[32];  
  40.         int           done = 0;  
  41. #define  REFERENCE_RIL_PATH  "/system/lib/libreference-ril.so"  
  42.         /* first, read /proc/cmdline into memory */  
  43.         char          buffer[1024], *p, *q;  
  44.         int           len;  
  45.         int           fd = open("/proc/cmdline",O_RDONLY);  
  46.         if (fd < 0) {  
  47.             LOGD("could not open /proc/cmdline:%s", strerror(errno));  
  48.             goto OpenLib;  
  49.         }  
  50.         //读取/proc/cmdline文件中的内容  
  51.         do {  
  52.             len = read(fd,buffer,sizeof(buffer)); }  
  53.         while (len == -1 && errno == EINTR);  
  54.         if (len < 0) {  
  55.             LOGD("could not read /proc/cmdline:%s", strerror(errno));  
  56.             close(fd);  
  57.             goto OpenLib;  
  58.         }  
  59.         close(fd);  
  60.         //判断是否为模拟器,对于真机,此处条件为false  
  61.         if (strstr(buffer, "android.qemud=") != NULL)  
  62.         {  
  63.             int  tries = 5;  
  64. #define  QEMUD_SOCKET_NAME    "qemud"  
  65.             while (1) {  
  66.                 int  fd;  
  67.                 sleep(1);  
  68.                 fd = socket_local_client(QEMUD_SOCKET_NAME,  
  69.                             ANDROID_SOCKET_NAMESPACE_RESERVED,  
  70.                             SOCK_STREAM );  
  71.                 if (fd >= 0) {  
  72.                     close(fd);  
  73.                     snprintf( arg_device, sizeof(arg_device), "%s/%s",  
  74.                                 ANDROID_SOCKET_DIR, QEMUD_SOCKET_NAME );  
  75.                     arg_overrides[1] = "-s";  
  76.                     arg_overrides[2] = arg_device;  
  77.                     done = 1;  
  78.                     break;  
  79.                 }  
  80.                 LOGD("could not connect to %s socket: %s",QEMUD_SOCKET_NAME, strerror(errno));  
  81.                 if (--tries == 0)  
  82.                     break;  
  83.             }  
  84.             if (!done) {  
  85.                 LOGE("could not connect to %s socket (giving up): %s",  
  86.                     QEMUD_SOCKET_NAME, strerror(errno));  
  87.                 while(1)  
  88.                     sleep(0x00ffffff);  
  89.             }  
  90.         }  
  91.   
  92.         /* otherwise, try to see if we passed a device name from the kernel */  
  93.         if (!done) do { //true  
  94. #define  KERNEL_OPTION  "android.ril="  
  95. #define  DEV_PREFIX     "/dev/"  
  96.             //判断/proc/cmdline中的内容是否包含"android.ril="  
  97.             p = strstr( buffer, KERNEL_OPTION );  
  98.             if (p == NULL)  
  99.                 break;  
  100.             p += sizeof(KERNEL_OPTION)-1;  
  101.             q  = strpbrk( p, " \t\n\r" );  
  102.             if (q != NULL)  
  103.                 *q = 0;  
  104.             snprintf( arg_device, sizeof(arg_device), DEV_PREFIX "%s", p );  
  105.             arg_device[sizeof(arg_device)-1] = 0;  
  106.             arg_overrides[1] = "-d";  
  107.             arg_overrides[2] = arg_device;  
  108.             done = 1;  
  109.         } while (0);  
  110.           
  111.         if (done) { //false  
  112.             argv = arg_overrides;  
  113.             argc = 3;  
  114.             i    = 1;  
  115.             hasLibArgs = 1;  
  116.             rilLibPath = REFERENCE_RIL_PATH;  
  117.             LOGD("overriding with %s %s", arg_overrides[1], arg_overrides[2]);  
  118.         }  
  119.     }  
  120. OpenLib:  
  121. #endif  
  122. ##################################################################################  
  123.                             动态库装载  
  124. ##################################################################################  
  125.   
  126.   switchUser();//设置Rild进程的组用户为radio  
  127.   //加载厂商自定义的库  
  128.     ①dlHandle = dlopen(rilLibPath, RTLD_NOW);  
  129.     if (dlHandle == NULL) {  
  130.         fprintf(stderr, "dlopen failed: %s\n", dlerror());  
  131.         exit(-1);  
  132.   }  
  133.   //创建客户端事件监听线程  
  134.   ②RIL_startEventLoop();  
  135.   //通过dlsym定位到RIL_Init函数的地址,并且强制转换为RIL_RadioFunctions的函数指针  
  136.     ③rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, int, char **))dlsym(dlHandle, "RIL_Init");  
  137.     if (rilInit == NULL) {  
  138.         fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);  
  139.         exit(-1);  
  140.     }  
  141.     if (hasLibArgs) { //false  
  142.         rilArgv = argv + i - 1;  
  143.         argc = argc -i + 1;  
  144.     } else {  
  145.         static char * newArgv[MAX_LIB_ARGS];  
  146.         static char args[PROPERTY_VALUE_MAX];  
  147.         rilArgv = newArgv;  
  148.         property_get(LIB_ARGS_PROPERTY, args, "");//通过属性系统读取"rild.libargs"属性值  
  149.         argc = make_argv(args, rilArgv);  
  150.     }  
  151.     // Make sure there‘s a reasonable argv[0]  
  152.   rilArgv[0] = argv[0];  
  153.   //调用RIL_Init函数来初始化rild,传入参数s_rilEnv,返回RIL_RadioFunctions地址  
  154.   ④funcs = rilInit(&s_rilEnv, argc, rilArgv);  
  155.   //注册客户端事件处理接口RIL_RadioFunctions,并创建socket监听事件  
  156.     ⑤RIL_register(funcs);  
  157. done:  
  158.     while(1) {  
  159.         // sleep(UINT32_MAX) seems to return immediately on bionic  
  160.         sleep(0x00ffffff);  
  161.     }  
  162. }  

 

在main函数中主要完成以下工作:

 

1.解析命令行参数,通过判断是否为模拟器采取不同的方式来读取libreference-ril.so库的存放路径;

2.使用dlopen手动装载libreference-ril.so库;

3.启动事件循环处理;

4.从libreference-ril.so库中取得RIL_Init函数地址,并使用该函数将libril.so库中的RIL_Env接口注册到libreference-ril.so库,同时将libreference-ril.so库中的RIL_RadioFunctions接口注册到到libril.so库中,建立起libril.so库与libreference-ril.so库通信桥梁;

启动事件循环处理eventLoop工作线程

建立多路I/O驱动机制的消息队列,用来接收上层发出的命令以及往Modem发送AT指令的工作,时整个RIL系统的核心部分。创建一个事件分发线程s_tid_dispatch,线程执行体为eventLoop。

 

hardware\ril\libril\Ril.cpp 

[cpp] view plaincopy
 
  1. extern "C" void RIL_startEventLoop(void) {  
  2.     int ret;  
  3.     pthread_attr_t attr;  
  4.     /* spin up eventLoop thread and wait for it to get started */  
  5.     s_started = 0;  
  6.     pthread_mutex_lock(&s_startupMutex);  
  7.     pthread_attr_init (&attr);  
  8.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  9.   //创建一个工作线程eventLoop  
  10.   ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);  
  11.   //确保函数返回前eventLoop线程启动运行  
  12.     while (s_started == 0) {  
  13.         pthread_cond_wait(&s_startupCond, &s_startupMutex);  
  14.     }  
  15.     pthread_mutex_unlock(&s_startupMutex);  
  16.     if (ret < 0) {  
  17.         LOGE("Failed to create dispatch thread errno:%d", errno);  
  18.         return;  
  19.     }  
  20. }  
eventLoop执行时序图:

 

[cpp] view plaincopy
 
  1. static void * eventLoop(void *param) {  
  2.     int ret;  
  3.     int filedes[2];  
  4.     ril_event_init(); //初始化请求队列  
  5.     pthread_mutex_lock(&s_startupMutex);  
  6.     s_started = 1; //eventLoop线程运行标志位  
  7.     pthread_cond_broadcast(&s_startupCond);  
  8.   pthread_mutex_unlock(&s_startupMutex);  
  9.   //创建匿名管道  
  10.     ret = pipe(filedes);  
  11.     if (ret < 0) {  
  12.         LOGE("Error in pipe() errno:%d", errno);  
  13.         return NULL;  
  14.   }  
  15.   //s_fdWakeupRead为管道读端  
  16.   s_fdWakeupRead = filedes[0];  
  17.   //s_fdWakeupWrite为管道写端  
  18.   s_fdWakeupWrite = filedes[1];  
  19.   //设置管道读端为O_NONBLOCK非阻塞  
  20.   fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);  
  21.   //初始化s_wakeupfd_event结构体的内容,句柄为s_fdWakeupRead,回调函数为   processWakeupCallback  
  22.     ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL);  
  23.     ①rilEventAddWakeup (&s_wakeupfd_event);  
  24.     // Only returns on error  
  25.     ②ril_event_loop();  
  26.     LOGE ("error in event_loop_base errno:%d", errno);  
  27.     return NULL;  
  28. }  
在rild中定义了event的概念,Rild支持两种类型的事件:

1. 定时事件:根据事件的执行时间来启动执行,通过ril_timer_add添加到time_list队列中

2. Wakeup事件:这些事件的句柄fd将加入的select IO多路复用的句柄池readFDs中,当对应的fd可读时将触发这些事件。对于处于listen端的socket,fd可读表示有个客户端连接,此时需要调用accept接受连接。

事件定义如下:
[cpp] view plaincopy
 
  1. struct ril_event {  
  2.     struct ril_event *next;  
  3.     struct ril_event *prev;  
  4.     int fd;  //文件句柄  
  5.     int index; //该事件在监控表中的索引   
  6.     bool persist; //如果是保持的,则不从watch_list 中删除  
  7.     struct timeval timeout; //任务执行时间  
  8.     ril_event_cb func; //回调事件处理函数  
  9.     void *param; //回调时参数  
  10. };  

在Rild进程中的几个重要事件有

[cpp] view plaincopy
 
  1. static struct ril_event s_commands_event;  
  2. ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs)  
  3.   
  4. static struct ril_event s_wakeupfd_event;  
  5. ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL)  
  6.   
  7. static struct ril_event s_listen_event;  
  8. ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL)  
  9.   
  10. static struct ril_event s_wake_timeout_event;  
  11. ril_timer_add(&(p_info->event), &myRelativeTime);  
[cpp] view plaincopy
 
  1. static struct ril_event s_debug_event;  
  2. ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL)  
在RILD中定义了三个事件队列,用于处理不同的事件:

/事件监控队列

static struct ril_event * watch_table[MAX_FD_EVENTS];

//定时事件队列

static struct ril_event timer_list;

//处理事件队列

static struct ril_event pending_list; //待处理事件队列,事件已经触发,需要所回调处理的事件

添加事件

1.添加Wakeup 事件
 
[cpp] view plaincopy
 
  1. static void rilEventAddWakeup(struct ril_event *ev) {  
  2.     ril_event_add(ev); //向监控表watch_table添加一个s_wakeupfd_event事件  
  3.     triggerEvLoop(); //向管道s_fdWakeupWrite中写入之来触发事件循环  
  4. }  
[cpp] view plaincopy
 
  1. void ril_event_add(struct ril_event * ev)  
  2. {  
  3.     dlog("~~~~ +ril_event_add ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     for (int i = 0; i < MAX_FD_EVENTS; i++) { //遍历监控表watch_table  
  6.         if (watch_table[i] == NULL) { //从监控表中查找空闲的索引,然后把该任务加入到监控表中  
  7.             watch_table[i] = ev; //向监控表中添加事件  
  8.             ev->index = i; //事件的索引设置为在监控表中的索引  
  9.             dlog("~~~~ added at %d ~~~~", i);  
  10.             dump_event(ev);  
  11.             FD_SET(ev->fd, &readFds); //将添加的事件对应的句柄添加到句柄池readFds中  
  12.             if (ev->fd >= nfds) nfds = ev->fd+1; //修改句柄最大值  
  13.             dlog("~~~~ nfds = %d ~~~~", nfds);  
  14.             break;  
  15.         }  
  16.     }  
  17.     MUTEX_RELEASE();  
  18.     dlog("~~~~ -ril_event_add ~~~~");  
  19. }  

2.添加定时事件
[cpp] view plaincopy
 
  1. void ril_timer_add(struct ril_event * ev, struct timeval * tv)  
  2. {  
  3.     dlog("~~~~ +ril_timer_add ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     struct ril_event * list;  
  6.     if (tv != NULL) {  
  7.         list = timer_list.next;  
  8.         ev->fd = -1; // make sure fd is invalid  
  9.         struct timeval now;  
  10.         getNow(&now);  
  11.         timeradd(&now, tv, &ev->timeout);  
  12.         // keep list sorted  
  13.         while (timercmp(&list->timeout, &ev->timeout, < ) && (list != &timer_list)) {  
  14.             list = list->next;  
  15.         }  
  16.         // list now points to the first event older than ev  
  17.         addToList(ev, list);  
  18.     }  
  19.     MUTEX_RELEASE();  
  20.     dlog("~~~~ -ril_timer_add ~~~~");  
  21. }  

触发事件

[cpp] view plaincopy
 
  1. static void triggerEvLoop() {  
  2.     int ret;  
  3.   if (!pthread_equal(pthread_self(), s_tid_dispatch)) { //如果当前线程ID不等于事件分发线程eventLoop的线程ID  
  4.       do {  
  5.             ret = write (s_fdWakeupWrite, " ", 1); //向管道写端写入值1来触发eventLoop事件循环  
  6.          } while (ret < 0 && errno == EINTR);  
  7.     }  
  8. }  

处理事件

[cpp] view plaincopy
 
  1. void ril_event_loop()  
  2. {  
  3.     int n;  
  4.     fd_set rfds;  
  5.     struct timeval tv;  
  6.     struct timeval * ptv;  
  7.     for (;;) {  
  8.         memcpy(&rfds, &readFds, sizeof(fd_set));  
  9.         if (-1 == calcNextTimeout(&tv)) {  
  10.             dlog("~~~~ no timers; blocking indefinitely ~~~~");  
  11.             ptv = NULL;  
  12.         } else {  
  13.             dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);  
  14.             ptv = &tv;  
  15.         }  
  16.         //使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent 加入的。  
  17.         printReadies(&rfds);  
  18.         n = select(nfds, &rfds, NULL, NULL, ptv);   
  19.         printReadies(&rfds);  
  20.         dlog("~~~~ %d events fired ~~~~", n);  
  21.         if (n < 0) {  
  22.             if (errno == EINTR) continue;  
  23.             LOGE("ril_event: select error (%d)", errno);  
  24.             return;  
  25.         }  
  26.         processTimeouts(); //从timer_list中查询执行时间已到的事件,并添加到pending_list中  
  27.         processReadReadies(&rfds, n); //从watch_table中查询数据可读的事件,并添加到pending_list中去处理,如果该事件不是持久事件,则同时从watch_table中删除  
  28.         //遍历pending_list,调用事件处理回调函数处理所有事件  
  29.         firePending();  
  30.     }  
  31. }  


在eventLoop工作线程中,循环处理到来的事件及定时结束事件,整个处理流程如下图所示:
首先通过Linux中的select多路I/O复用对句柄池中的所有句柄进行监控,当有事件到来时select返回,否则阻塞。当select返回时,表示有事件的到来,通过调用processTimeouts函数来处理超时事件,处理方式是遍历time_list链表以查询超时事件,并将超时事件移入到pending_list链表中,接着调用processReadReadies函数来处理触发的事件,处理方式为遍历watch_table列表以查询触发的事件,并将触发的事件移入到pending_list链表中,如果该事件不是持久事件,还需要从watch_table列表中移除,当查询完两种待处理的事件并放入到pending_list链表中后,调用firePending函数对待处理的事件进行集中处理,处理方式为遍历链表,调用每一个事件的回调函数。
 
 1.超时事件查询
[cpp] view plaincopy
 
  1. static void processTimeouts()  
  2. {  
  3.     dlog("~~~~ +processTimeouts ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     struct timeval now;  
  6.     struct ril_event * tev = timer_list.next;  
  7.     struct ril_event * next;  
  8.     getNow(&now); //获取当前时间  
  9.   dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);  
  10.   //如果当前时间大于事件的超时时间,则将该事件从timer_list中移除,添加到pending_list  
  11.     while ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {  
  12.         dlog("~~~~ firing timer ~~~~");  
  13.         next = tev->next;  
  14.         removeFromList(tev); //从timer_list中移除事件  
  15.         addToList(tev, &pending_list); //将事件添加到pending_list  
  16.         tev = next;  
  17.     }  
  18.     MUTEX_RELEASE();  
  19.     dlog("~~~~ -processTimeouts ~~~~");  
  20. }  
2.可读事件查询

 

[cpp] view plaincopy
 
  1. static void processReadReadies(fd_set * rfds, int n)  
  2. {  
  3.     dlog("~~~~ +processReadReadies (%d) ~~~~", n);  
  4.   MUTEX_ACQUIRE();   
  5.   //遍历watch_table数组,根据select返回的句柄n查找对应的事件  
  6.     for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {  
  7.         struct ril_event * rev = watch_table[i]; //得到相应的事件  
  8.         if (rev != NULL && FD_ISSET(rev->fd, rfds)) {  
  9.             addToList(rev, &pending_list); //将该事件添加到pending_list中  
  10.             if (rev->persist == false) { //如果该事件不是持久事件还要从watch_table中移除  
  11.                 removeWatch(rev, i);  
  12.             }  
  13.             n--;  
  14.         }  
  15.     }  
  16.     MUTEX_RELEASE();  
  17.     dlog("~~~~ -processReadReadies (%d) ~~~~", n);  
  18. }  

 

3.事件处理
[cpp] view plaincopy
 
  1. static void firePending()  
  2. {  
  3.     dlog("~~~~ +firePending ~~~~");  
  4.     struct ril_event * ev = pending_list.next;  
  5.     while (ev != &pending_list) { //遍历pending_list链表,处理链表中的所有事件  
  6.         struct ril_event * next = ev->next;  
  7.         removeFromList(ev); //将处理完的事件从pending_list中移除  
  8.         ev->func(ev->fd, 0, ev->param); //调用事件处理的回调函数  
  9.         ev = next;  
  10.     }  
  11.     dlog("~~~~ -firePending ~~~~");  
  12. }  

RIL_Env定义

hardware\ril\include\telephony\ril.h

[cpp] view plaincopy
 
  1. struct RIL_Env {  
  2.     //动态库完成请求后通知处理结果的接口  
  3.   void (*OnRequestComplete)(RIL_Token t, RIL_Errno e,void *response, size_t responselen);  
  4.     //动态库unSolicited Response通知接口  
  5.   void (*OnUnsolicitedResponse)(int unsolResponse, const void *data,size_t datalen);  
  6.     //向Rild提交一个超时任务的接口  
  7.     void (*RequestTimedCallback) (RIL_TimedCallback callback,void *param, const struct timeval *relativeTime);  
  8. };  

hardware\ril\rild\rild.c

s_rilEnv变量定义:

[cpp] view plaincopy
 
  1. static struct RIL_Env s_rilEnv = {  
  2.     RIL_onRequestComplete,  
  3.     RIL_onUnsolicitedResponse,  
  4.     RIL_requestTimedCallback  
  5. };  

在hardware\ril\libril\ril.cpp中实现了RIL_Env的各个接口函数

1.RIL_onRequestComplete

 

[cpp] view plaincopy
 
  1. extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {  
  2.     RequestInfo *pRI;  
  3.     int ret;  
  4.     size_t errorOffset;  
  5.     pRI = (RequestInfo *)t;  
  6.     if (!checkAndDequeueRequestInfo(pRI)) {  
  7.         LOGE ("RIL_onRequestComplete: invalid RIL_Token");  
  8.         return;  
  9.     }  
  10.     if (pRI->local > 0) {  
  11.         // Locally issued command...void only!  
  12.         // response does not go back up the command socket  
  13.         LOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));  
  14.         goto done;  
  15.     }  
  16.     appendPrintBuf("[%04d]< %s",pRI->token, requestToString(pRI->pCI->requestNumber));  
  17.     if (pRI->cancelled == 0) {  
  18.         Parcel p;  
  19.         p.writeInt32 (RESPONSE_SOLICITED);  
  20.         p.writeInt32 (pRI->token);  
  21.         errorOffset = p.dataPosition();  
  22.         p.writeInt32 (e);  
  23.         if (response != NULL) {  
  24.             // there is a response payload, no matter success or not.  
  25.             ret = pRI->pCI->responseFunction(p, response, responselen);  
  26.             /* if an error occurred, rewind and mark it */  
  27.             if (ret != 0) {  
  28.                 p.setDataPosition(errorOffset);  
  29.                 p.writeInt32 (ret);  
  30.             }  
  31.         }  
  32.         if (e != RIL_E_SUCCESS) {  
  33.             appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));  
  34.         }  
  35.         if (s_fdCommand < 0) {  
  36.             LOGD ("RIL onRequestComplete: Command channel closed");  
  37.         }  
  38.         sendResponse(p);  
  39.     }  
  40. done:  
  41.     free(pRI);  
  42. }  

通过调用responseXXX将底层响应传给客户进程

2.RIL_onUnsolicitedResponse

[cpp] view plaincopy
 
  1. extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, void *data,  
  2.                                 size_t datalen)  
  3. {  
  4.     int unsolResponseIndex;  
  5.     int ret;  
  6.     int64_t timeReceived = 0;  
  7.     bool shouldScheduleTimeout = false;  
  8.     if (s_registerCalled == 0) {  
  9.         // Ignore RIL_onUnsolicitedResponse before RIL_register  
  10.         LOGW("RIL_onUnsolicitedResponse called before RIL_register");  
  11.         return;  
  12.     }  
  13.     unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;  
  14.     if ((unsolResponseIndex < 0)  
  15.         || (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {  
  16.         LOGE("unsupported unsolicited response code %d", unsolResponse);  
  17.         return;  
  18.     }  
  19.     // Grab a wake lock if needed for this reponse,  
  20.     // as we exit we‘ll either release it immediately  
  21.     // or set a timer to release it later.  
  22.     switch (s_unsolResponses[unsolResponseIndex].wakeType) {  
  23.         case WAKE_PARTIAL:  
  24.             grabPartialWakeLock();  
  25.             shouldScheduleTimeout = true;  
  26.         break;  
  27.         case DONT_WAKE:  
  28.         default:  
  29.             // No wake lock is grabed so don‘t set timeout  
  30.             shouldScheduleTimeout = false;  
  31.             break;  
  32.     }  
  33.     // Mark the time this was received, doing this  
  34.     // after grabing the wakelock incase getting  
  35.     // the elapsedRealTime might cause us to goto  
  36.     // sleep.  
  37.     if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {  
  38.         timeReceived = elapsedRealtime();  
  39.     }  
  40.     appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));  
  41.     Parcel p;  
  42.     p.writeInt32 (RESPONSE_UNSOLICITED);  
  43.     p.writeInt32 (unsolResponse);  
  44.     ret = s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);  
  45.     if (ret != 0) {  
  46.         // Problem with the response. Don‘t continue;  
  47.         goto error_exit;  
  48.     }  
  49.     // some things get more payload  
  50.     switch(unsolResponse) {  
  51.         case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:  
  52.             p.writeInt32(s_callbacks.onStateRequest());  
  53.             appendPrintBuf("%s {%s}", printBuf,  
  54.                 radioStateToString(s_callbacks.onStateRequest()));  
  55.         break;  
  56.         case RIL_UNSOL_NITZ_TIME_RECEIVED:  
  57.             // Store the time that this was received so the  
  58.             // handler of this message can account for  
  59.             // the time it takes to arrive and process. In  
  60.             // particular the system has been known to sleep  
  61.             // before this message can be processed.  
  62.             p.writeInt64(timeReceived);  
  63.         break;  
  64.     }  
  65.     ret = sendResponse(p);  
  66.     if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {  
  67.         // Unfortunately, NITZ time is not poll/update like everything  
  68.         // else in the system. So, if the upstream client isn‘t connected,  
  69.         // keep a copy of the last NITZ response (with receive time noted  
  70.         // above) around so we can deliver it when it is connected  
  71.         if (s_lastNITZTimeData != NULL) {  
  72.             free (s_lastNITZTimeData);  
  73.             s_lastNITZTimeData = NULL;  
  74.         }  
  75.         s_lastNITZTimeData = malloc(p.dataSize());  
  76.         s_lastNITZTimeDataSize = p.dataSize();  
  77.         memcpy(s_lastNITZTimeData, p.data(), p.dataSize());  
  78.     }  
  79.     // For now, we automatically go back to sleep after TIMEVAL_WAKE_TIMEOUT  
  80.     // FIXME The java code should handshake here to release wake lock  
  81.     if (shouldScheduleTimeout) {  
  82.         // Cancel the previous request  
  83.         if (s_last_wake_timeout_info != NULL) {  
  84.             s_last_wake_timeout_info->userParam = (void *)1;  
  85.         }  
  86.         s_last_wake_timeout_info= internalRequestTimedCallback(wakeTimeoutCallback, NULL,  
  87.                                             &TIMEVAL_WAKE_TIMEOUT);  
  88.     }  
  89.     return;  
  90. error_exit:  
  91.     if (shouldScheduleTimeout) {  
  92.         releaseWakeLock();  
  93.     }  
  94. }  

这个函数处理modem从网络端接收到的各种事件,如网络信号变化,拨入的电话,收到短信等。然后传给客户进程。

3.RIL_requestTimedCallback

[cpp] view plaincopy
 
  1. extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,  
  2.                                 const struct timeval *relativeTime) {  
  3.     internalRequestTimedCallback (callback, param, relativeTime);  
  4. }  

[cpp] view plaincopy
 
  1. static UserCallbackInfo *internalRequestTimedCallback (RIL_TimedCallback callback, void *param,  
  2.                                 const struct timeval *relativeTime)  
  3. {  
  4.     struct timeval myRelativeTime;  
  5.     UserCallbackInfo *p_info;  
  6.     p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));  
  7.     p_info->p_callback = callback;  
  8.     p_info->userParam = param;  
  9.     if (relativeTime == NULL) {  
  10.         /* treat null parameter as a 0 relative time */  
  11.         memset (&myRelativeTime, 0, sizeof(myRelativeTime));  
  12.     } else {  
  13.         /* FIXME I think event_add‘s tv param is really const anyway */  
  14.         memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));  
  15.     }  
  16.     ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);  
  17.     ril_timer_add(&(p_info->event), &myRelativeTime);  
  18.     triggerEvLoop();  
  19.     return p_info;  
  20. }  

RIL_RadioFunctions定义

客户端向Rild发送请求的接口,由各手机厂商实现。

hardware\ril\include\telephony\Ril.h 

[cpp] view plaincopy
 
  1. typedef struct {  
  2.     int version; //Rild版本  
  3.     RIL_RequestFunc onRequest; //AP请求接口  
  4.     RIL_RadioStateRequest onStateRequest;//BP状态查询  
  5.     RIL_Supports supports;  
  6.     RIL_Cancel onCancel;  
  7.     RIL_GetVersion getVersion;//动态库版本  
  8. } RIL_RadioFunctions;  
变量定义:
[cpp] view plaincopy
 
  1. static const RIL_RadioFunctions s_callbacks = {  
  2.     RIL_VERSION,  
  3.     onRequest,  
  4.     currentState,  
  5.     onSupports,  
  6.     onCancel,  
  7.     getVersion  
  8. };  

在hardware\ril\reference-ril\reference-ril.c中实现了RIL_RadioFunctions的各个接口函数

1.onRequest

[cpp] view plaincopy
 
  1. static void onRequest (int request, void *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     ATResponse *p_response;  
  4.     int err;  
  5.     LOGD("onRequest: %s", requestToString(request));  
  6.     /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS 
  7.      * when RADIO_STATE_UNAVAILABLE. 
  8.      */  
  9.     if (sState == RADIO_STATE_UNAVAILABLE  
  10.         && request != RIL_REQUEST_GET_SIM_STATUS  
  11.     ) {  
  12.         RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);  
  13.         return;  
  14.     }  
  15.     /* Ignore all non-power requests when RADIO_STATE_OFF 
  16.      * (except RIL_REQUEST_GET_SIM_STATUS) 
  17.      */  
  18.     if (sState == RADIO_STATE_OFF&& !(request == RIL_REQUEST_RADIO_POWER  
  19.             || request == RIL_REQUEST_GET_SIM_STATUS)  
  20.     ) {  
  21.         RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);  
  22.         return;  
  23.     }  
  24.     switch (request) {  
  25.         case RIL_REQUEST_GET_SIM_STATUS: {  
  26.             RIL_CardStatus *p_card_status;  
  27.             char *p_buffer;  
  28.             int buffer_size;  
  29.             int result = getCardStatus(&p_card_status);  
  30.             if (result == RIL_E_SUCCESS) {  
  31.                 p_buffer = (char *)p_card_status;  
  32.                 buffer_size = sizeof(*p_card_status);  
  33.             } else {  
  34.                 p_buffer = NULL;  
  35.                 buffer_size = 0;  
  36.             }  
  37.             RIL_onRequestComplete(t, result, p_buffer, buffer_size);  
  38.             freeCardStatus(p_card_status);  
  39.             break;  
  40.         }  
  41.         case RIL_REQUEST_GET_CURRENT_CALLS:  
  42.             requestGetCurrentCalls(data, datalen, t);  
  43.             break;  
  44.         case RIL_REQUEST_DIAL:  
  45.             requestDial(data, datalen, t);  
  46.             break;  
  47.         case RIL_REQUEST_HANGUP:  
  48.             requestHangup(data, datalen, t);  
  49.             break;  
  50.         case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:  
  51.             // 3GPP 22.030 6.5.5  
  52.             // "Releases all held calls or sets User Determined User Busy  
  53.             //  (UDUB) for a waiting call."  
  54.             at_send_command("AT+CHLD=0", NULL);  
  55.             /* success or failure is ignored by the upper layer here. 
  56.                it will call GET_CURRENT_CALLS and determine success that way */  
  57.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  58.             break;  
  59.         case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:  
  60.             // 3GPP 22.030 6.5.5  
  61.             // "Releases all active calls (if any exist) and accepts  
  62.             //  the other (held or waiting) call."  
  63.             at_send_command("AT+CHLD=1", NULL);  
  64.             /* success or failure is ignored by the upper layer here. 
  65.                it will call GET_CURRENT_CALLS and determine success that way */  
  66.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  67.             break;  
  68.         case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:  
  69.             // 3GPP 22.030 6.5.5  
  70.             // "Places all active calls (if any exist) on hold and accepts  
  71.             //  the other (held or waiting) call."  
  72.             at_send_command("AT+CHLD=2", NULL);  
  73.   
  74. #ifdef WORKAROUND_ERRONEOUS_ANSWER  
  75.             s_expectAnswer = 1;  
  76. #endif /* WORKAROUND_ERRONEOUS_ANSWER */  
  77.             /* success or failure is ignored by the upper layer here. 
  78.                it will call GET_CURRENT_CALLS and determine success that way */  
  79.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  80.             break;  
  81.         case RIL_REQUEST_ANSWER:  
  82.             at_send_command("ATA", NULL);  
  83. #ifdef WORKAROUND_ERRONEOUS_ANSWER  
  84.             s_expectAnswer = 1;  
  85. #endif /* WORKAROUND_ERRONEOUS_ANSWER */  
  86.             /* success or failure is ignored by the upper layer here. 
  87.                it will call GET_CURRENT_CALLS and determine success that way */  
  88.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  89.             break;  
  90.         case RIL_REQUEST_CONFERENCE:  
  91.             // 3GPP 22.030 6.5.5  
  92.             // "Adds a held call to the conversation"  
  93.             at_send_command("AT+CHLD=3", NULL);  
  94.             /* success or failure is ignored by the upper layer here. 
  95.                it will call GET_CURRENT_CALLS and determine success that way */  
  96.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  97.             break;  
  98.         case RIL_REQUEST_UDUB:  
  99.             /* user determined user busy */  
  100.             /* sometimes used: ATH */  
  101.             at_send_command("ATH", NULL);  
  102.             /* success or failure is ignored by the upper layer here. 
  103.                it will call GET_CURRENT_CALLS and determine success that way */  
  104.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  105.             break;  
  106.         case RIL_REQUEST_SEPARATE_CONNECTION:  
  107.             {  
  108.                 char  cmd[12];  
  109.                 int   party = ((int*)data)[0];  
  110.                 // Make sure that party is in a valid range.  
  111.                 // (Note: The Telephony middle layer imposes a range of 1 to 7.  
  112.                 // It‘s sufficient for us to just make sure it‘s single digit.)  
  113.                 if (party > 0 && party < 10) {  
  114.                     sprintf(cmd, "AT+CHLD=2%d", party);  
  115.                     at_send_command(cmd, NULL);  
  116.                     RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  117.                 } else {  
  118.                     RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);  
  119.                 }  
  120.             }  
  121.             break;  
  122.         case RIL_REQUEST_SIGNAL_STRENGTH:  
  123.             requestSignalStrength(data, datalen, t);  
  124.             break;  
  125.         case RIL_REQUEST_REGISTRATION_STATE:  
  126.         case RIL_REQUEST_GPRS_REGISTRATION_STATE:  
  127.             requestRegistrationState(request, data, datalen, t);  
  128.             break;  
  129.         case RIL_REQUEST_OPERATOR:  
  130.             requestOperator(data, datalen, t);  
  131.             break;  
  132.         case RIL_REQUEST_RADIO_POWER:  
  133.             requestRadioPower(data, datalen, t);  
  134.             break;  
  135.         case RIL_REQUEST_DTMF: {  
  136.             char c = ((char *)data)[0];  
  137.             char *cmd;  
  138.             asprintf(&cmd, "AT+VTS=%c", (int)c);  
  139.             at_send_command(cmd, NULL);  
  140.             free(cmd);  
  141.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  142.             break;  
  143.         }  
  144.         case RIL_REQUEST_SEND_SMS:  
  145.             requestSendSMS(data, datalen, t);  
  146.             break;  
  147.         case RIL_REQUEST_SETUP_DATA_CALL:  
  148.             requestSetupDataCall(data, datalen, t);  
  149.             break;  
  150.         case RIL_REQUEST_SMS_ACKNOWLEDGE:  
  151.             requestSMSAcknowledge(data, datalen, t);  
  152.             break;  
  153.         case RIL_REQUEST_GET_IMSI:  
  154.             p_response = NULL;  
  155.             err = at_send_command_numeric("AT+CIMI", &p_response);  
  156.             if (err < 0 || p_response->success == 0) {  
  157.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);  
  158.             } else {  
  159.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  160.                     p_response->p_intermediates->line, sizeof(char *));  
  161.             }  
  162.             at_response_free(p_response);  
  163.             break;  
  164.         case RIL_REQUEST_GET_IMEI:  
  165.             p_response = NULL;  
  166.             err = at_send_command_numeric("AT+CGSN", &p_response);  
  167.   
  168.             if (err < 0 || p_response->success == 0) {  
  169.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);  
  170.             } else {  
  171.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  172.                     p_response->p_intermediates->line, sizeof(char *));  
  173.             }  
  174.             at_response_free(p_response);  
  175.             break;  
  176.         case RIL_REQUEST_SIM_IO:  
  177.             requestSIM_IO(data,datalen,t);  
  178.             break;  
  179.         case RIL_REQUEST_SEND_USSD:  
  180.             requestSendUSSD(data, datalen, t);  
  181.             break;  
  182.         case RIL_REQUEST_CANCEL_USSD:  
  183.             p_response = NULL;  
  184.             err = at_send_command_numeric("AT+CUSD=2", &p_response);  
  185.             if (err < 0 || p_response->success == 0) {  
  186.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);  
  187.             } else {  
  188.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  189.                     p_response->p_intermediates->line, sizeof(char *));  
  190.             }  
  191.             at_response_free(p_response);  
  192.             break;  
  193.         case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:  
  194.             at_send_command("AT+COPS=0", NULL);  
  195.             break;  
  196.         case RIL_REQUEST_DATA_CALL_LIST:  
  197.             requestDataCallList(data, datalen, t);  
  198.             break;  
  199.         case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:  
  200.             requestQueryNetworkSelectionMode(data, datalen, t);  
  201.             break;  
  202.         case RIL_REQUEST_OEM_HOOK_RAW:  
  203.             // echo back data  
  204.             RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);  
  205.             break;  
  206.         case RIL_REQUEST_OEM_HOOK_STRINGS: {  
  207.             int i;  
  208.             const char ** cur;  
  209.             LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);  
  210.             for (i = (datalen / sizeof (char *)), cur = (const char **)data ;  
  211.                     i > 0 ; cur++, i --) {  
  212.                 LOGD("> ‘%s‘", *cur);  
  213.             }  
  214.             // echo back strings  
  215.             RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);  
  216.             break;  
  217.         }  
  218.         case RIL_REQUEST_WRITE_SMS_TO_SIM:  
  219.             requestWriteSmsToSim(data, datalen, t);  
  220.             break;  
  221.         case RIL_REQUEST_DELETE_SMS_ON_SIM: {  
  222.             char * cmd;  
  223.             p_response = NULL;  
  224.             asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);  
  225.             err = at_send_command(cmd, &p_response);  
  226.             free(cmd);  
  227.             if (err < 0 || p_response->success == 0) {  
  228.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);  
  229.             } else {  
  230.                 RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  231.             }  
  232.             at_response_free(p_response);  
  233.             break;  
  234.         }  
  235.         case RIL_REQUEST_ENTER_SIM_PIN:  
  236.         case RIL_REQUEST_ENTER_SIM_PUK:  
  237.         case RIL_REQUEST_ENTER_SIM_PIN2:  
  238.         case RIL_REQUEST_ENTER_SIM_PUK2:  
  239.         case RIL_REQUEST_CHANGE_SIM_PIN:  
  240.         case RIL_REQUEST_CHANGE_SIM_PIN2:  
  241.             requestEnterSimPin(data, datalen, t);  
  242.             break;  
  243.         case RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION:  
  244.             requestSmsBroadcastActivation(0,data, datalen, t);  
  245.             break;  
  246.         case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:  
  247.              LOGD("onRequest RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG");  
  248.             requestSetSmsBroadcastConfig(0,data, datalen, t);  
  249.             break;  
  250.         case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:  
  251.             requestGetSmsBroadcastConfig(0,data, datalen, t);  
  252.             break;  
  253.         default:  
  254.             RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);  
  255.             break;  
  256.     }  
  257. }  

对每一个RIL_REQUEST_XXX请求转化成相应的ATcommand,发送给modem,然后睡眠等待,当收到ATcommand的最终响应后,线程被唤醒,将响应传给客户端进程。

2.currentState

[cpp] view plaincopy
 
  1. static RIL_RadioState currentState()  
  2. {  
  3.     return sState;  
  4. }  

3.onSupports

[cpp] view plaincopy
 
  1. static int onSupports (int requestCode)  
  2. {  
  3.     //@@@ todo  
  4.     return 1;  
  5. }  

4.onCancel

[cpp] view plaincopy
 
  1. static void onCancel (RIL_Token t)  
  2. {  
  3.     //@@@todo  
  4. }  

5.getVersion

[cpp] view plaincopy
 
  1. static const char * getVersion(void)  
  2. {  
  3.     return "android reference-ril 1.0";  
  4. }  

 

注册RIL_Env接口

 

 

由于各手机厂商的AT指令差异,因此与modem交互层需要各手机厂商实现,以动态库的形式提供。作为介于modem与上层的中间层,即要与底层交互也要与上层通信,因此就需要定义一个接口来衔接RILD与动态库,RIL_Env和RIL_RadioFunctions接口就是libril.so与librefrence.so通信的桥梁。是Rild架构中用于隔离通用代码和厂商代码的接口,RIL_Env由通用代码实现,而RIL_RadioFunctions则是由厂商代码实现。


RIL_Init的主要任务:

1. 向librefrence.so注册libril.so提供的接口RIL_Env;

2. 创建一个mainLoop工作线程,用于初始化AT模块,并监控AT模块的状态,一旦AT被关闭,则重新打开并初始化AT;

3. 当AT被打开后,mainLoop工作线程将向Rild提交一个定时事件,并触发eventLoop来完成对modem的初始化;

4. 创建一个readLoop工作线程,用于从AT串口中读取数据;

5.返回librefrence.so提供的接口RIL_RadioFunctions;

hardware\ril\reference-ril\reference-ril.c

[cpp] view plaincopy
 
  1. const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv)  
  2. {  
  3.     int ret;  
  4.     int fd = -1;  
  5.     int opt;  
  6.     pthread_attr_t attr;  
  7.   s_rilenv = env; //将ril.cpp中定义的RIL_Env注册到reference-ril.c中的s_rilenv  
  8.     while ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {  
  9.         switch (opt) {  
  10.             case ‘p‘:  
  11.                 s_port = atoi(optarg);  
  12.                 if (s_port == 0) {  
  13.                     usage(argv[0]);  
  14.                     return NULL;  
  15.                 }  
  16.                 LOGI("Opening loopback port %d\n", s_port);  
  17.             break;  
  18.             case ‘d‘:  
  19.                 s_device_path = optarg;  
  20.                 LOGI("Opening tty device %s\n", s_device_path);  
  21.             break;  
  22.             case ‘s‘:  
  23.                 s_device_path   = optarg;  
  24.                 s_device_socket = 1;  
  25.                 LOGI("Opening socket %s\n", s_device_path);  
  26.             break;  
  27.             default:  
  28.                 usage(argv[0]);  
  29.                 return NULL;  
  30.         }  
  31.     }  
  32.     if (s_port < 0 && s_device_path == NULL) {  
  33.         usage(argv[0]);  
  34.         return NULL;  
  35.     }  
  36.     pthread_attr_init (&attr);  
  37.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  38.   //创建一个mainLoop线程  
  39.   ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL);  
  40.   //将reference-ril.c中定义的RIL_RadioFunctions返回并注册到ril.cpp中的s_callbacks  
  41.     return &s_callbacks;  
  42. }  

mainLoop工作线程是用来初始化并监控AT模块的,一旦AT模块被关闭,就自动打开。

[cpp] view plaincopy
 
  1. static void * mainLoop(void *param)  
  2. {  
  3.     int fd;  
  4.     int ret;  
  5.   AT_DUMP("== ", "entering mainLoop()", -1 );  
  6.   //为AT模块设置回调函数  
  7.     at_set_on_reader_closed(onATReaderClosed);  
  8.     at_set_on_timeout(onATTimeout);  
  9.     for (;;) {  
  10.         fd = -1;  
  11.         while  (fd < 0) { //获得串口AT模块的设备文件描述符  
  12.             if (s_port > 0) {  
  13.                 fd = socket_loopback_client(s_port, SOCK_STREAM);  
  14.             } else if (s_device_socket) {  
  15.                 if (!strcmp(s_device_path, "/dev/socket/qemud")) {  
  16.                     /* Qemu-specific control socket */  
  17.                     fd = socket_local_client( "qemud",  
  18.                  ANDROID_SOCKET_NAMESPACE_RESERVED,SOCK_STREAM );  
  19.                     if (fd >= 0 ) {  
  20.                         char  answer[2];  
  21.                         if ( write(fd, "gsm", 3) != 3 ||read(fd, answer, 2) != 2 ||  
  22.                              memcmp(answer, "OK", 2) != 0)  
  23.                         {  
  24.                             close(fd);  
  25.                             fd = -1;  
  26.                         }  
  27.                    }  
  28.                 }  
  29.                 else  
  30.                     fd = socket_local_client( s_device_path,    ANDROID_SOCKET_NAMESPACE_FILESYSTEM,SOCK_STREAM );  
  31.             } else if (s_device_path != NULL) {  
  32.                 fd = open (s_device_path, O_RDWR);  
  33.                 if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS", 9 ) ) {  
  34.                     /* disable echo on serial ports */  
  35.                     struct termios  ios;  
  36.                     tcgetattr( fd, &ios );  
  37.                     ios.c_lflag = 0;  /* disable ECHO, ICANON, etc... */  
  38.                     tcsetattr( fd, TCSANOW, &ios );  
  39.                 }  
  40.             }  
  41.             if (fd < 0) {  
  42.                 perror ("opening AT interface. retrying...");  
  43.                 sleep(10);  
  44.             }  
  45.         }  
  46.         s_closed = 0;  
  47.         //打开AT模块,创建AT读取线程s_tid_reader,fd为modem设备文件句柄  
  48.         ret = at_open(fd, onUnsolicited);  
  49.         if (ret < 0) {  
  50.             LOGE ("AT error %d on at_open\n", ret);  
  51.             return 0;  
  52.         }  
  53.         //向Rild提交超时任务  
  54.         RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);  
  55.         sleep(1);  
  56.         //如果AT模块被关闭,则waitForClose返回,重新打开AT,如果AT已打开,则阻塞  
  57.         waitForClose();  
  58.         LOGI("Re-opening after close");  
  59.     }  
  60. }  

 

1.打开AT模块

 

通过at_open打开文件描述符为fd的AT串口设备,并注册回调函数ATUnsolHandler 

 

[cpp] view plaincopy
 
  1. int at_open(int fd, ATUnsolHandler h)  
  2. {  
  3.     int ret;  
  4.     pthread_t tid;  
  5.     pthread_attr_t attr;  
  6.     s_fd = fd;  
  7.     s_unsolHandler = h;  
  8.     s_readerClosed = 0;  
  9.     s_responsePrefix = NULL;  
  10.     s_smsPDU = NULL;  
  11.     sp_response = NULL;  
  12.     /* Android power control ioctl */  
  13. #ifdef HAVE_ANDROID_OS  
  14. #ifdef OMAP_CSMI_POWER_CONTROL  
  15.     ret = ioctl(fd, OMAP_CSMI_TTY_ENABLE_ACK);  
  16.     if(ret == 0) {  
  17.         int ack_count;  
  18.         int read_count;  
  19.         int old_flags;  
  20.         char sync_buf[256];  
  21.         old_flags = fcntl(fd, F_GETFL, 0);  
  22.         fcntl(fd, F_SETFL, old_flags | O_NONBLOCK);  
  23.         do {  
  24.             ioctl(fd, OMAP_CSMI_TTY_READ_UNACKED, &ack_count);  
  25.             read_count = 0;  
  26.             do {  
  27.                 ret = read(fd, sync_buf, sizeof(sync_buf));  
  28.                 if(ret > 0)  
  29.                     read_count += ret;  
  30.             } while(ret > 0 || (ret < 0 && errno == EINTR));  
  31.             ioctl(fd, OMAP_CSMI_TTY_ACK, &ack_count);  
  32.          } while(ack_count > 0 || read_count > 0);  
  33.         fcntl(fd, F_SETFL, old_flags);  
  34.         s_readCount = 0;  
  35.         s_ackPowerIoctl = 1;  
  36.     }  
  37.     else  
  38.         s_ackPowerIoctl = 0;  
  39. #else // OMAP_CSMI_POWER_CONTROL  
  40.         s_ackPowerIoctl = 0;  
  41. #endif // OMAP_CSMI_POWER_CONTROL  
  42. #endif /*HAVE_ANDROID_OS*/  
  43.     pthread_attr_init (&attr);  
  44.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  45.   //创建readerLoop工作线程,该线程用于从串口读取数据  
  46.     ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr);  
  47.     if (ret < 0) {  
  48.         perror ("pthread_create");  
  49.         return -1;  
  50.     }  
  51.     return 0;  
  52. }  

 

2.添加定时事件RIL_requestTimedCallback

[cpp] view plaincopy
 
  1. RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);  
  2.   
  3. #define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c)  

 

向定时事件队列中添加一个定时事件,该事件的处理函数为initializeCallback,用于发送一些AT指令来初始化BP的modem。

3.readLoop工作线程

Read loop 解析从Modem 发过来的回应。如果遇到URC 则通过handleUnsolicited 上报的RIL_JAVA。如果是命令的应答,则通过handleFinalResponse 通知send_at_command 有应答结果。

[cpp] view plaincopy
 
  1. static void *readerLoop(void *arg)  
  2. {  
  3.     for (;;) {  
  4.         const char * line;  
  5.         line = readline();  
  6.         if (line == NULL) {  
  7.             break;  
  8.         }  
  9.         if(isSMSUnsolicited(line)) { //判断是否是SMS 通知  
  10.             char *line1;  
  11.             const char *line2;  
  12.             line1 = strdup(line);  
  13.             line2 = readline();  
  14.             if (line2 == NULL) {  
  15.                 break;  
  16.             }  
  17.             if (s_unsolHandler != NULL) {  
  18.                 s_unsolHandler (line1, line2); //回调通知SMS  
  19.             }  
  20.             free(line1);  
  21.         } else {  
  22.             processLine(line); //处理接收到的数据,根据line中的指令调用不同的回调函数  
  23.         }  
  24. #ifdef HAVE_ANDROID_OS  
  25.         if (s_ackPowerIoctl > 0) {  
  26.             /* acknowledge that bytes have been read and processed */  
  27.             ioctl(s_fd, OMAP_CSMI_TTY_ACK, &s_readCount);  
  28.             s_readCount = 0;  
  29.         }  
  30. #endif /*HAVE_ANDROID_OS*/  
  31.     }  
  32.     onReaderClosed();  
  33.     return NULL;  
  34. }  

注册RIL_RadioFunctions接口

hardware\ril\libril\ril.cpp

[cpp] view plaincopy
 
  1. extern "C" void RIL_register (const RIL_RadioFunctions *callbacks) {  
  2.     int ret;  
  3.   int flags;  
  4.   //版本验证  
  5.     if (callbacks == NULL || ((callbacks->version != RIL_VERSION)&& (callbacks->version < 2))) {   
  6.         return;  
  7.     }  
  8.     if (callbacks->version < RIL_VERSION) {  
  9.         LOGE ("RIL_register: upgrade RIL to version %d current version=%d",  
  10.               RIL_VERSION, callbacks->version);  
  11.     }  
  12.     if (s_registerCalled > 0) {  
  13.         LOGE("RIL_register has been called more than once. "Subsequent call ignored");  
  14.         return;  
  15.   }  
  16.     //将reference-ril.c中定义的RIL_RadioFunctions注册到ril.cpp中  
  17.     memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));  
  18.     s_registerCalled = 1;  
  19.     for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {  
  20.         assert(i == s_commands[i].requestNumber); //序号验证  
  21.     }  
  22.     for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {  
  23.         assert(i + RIL_UNSOL_RESPONSE_BASE== s_unsolResponses[i].requestNumber);  
  24.     }  
  25.     // old standalone impl wants it here.  
  26.     if (s_started == 0) {  
  27.         RIL_startEventLoop();  
  28.     }  
  29.   // 得到名为rild的socket句柄  
  30.   s_fdListen = android_get_control_socket(SOCKET_NAME_RIL);  
  31.     if (s_fdListen < 0) {  
  32.         LOGE("Failed to get socket ‘" SOCKET_NAME_RIL "‘");  
  33.         exit(-1);  
  34.   }  
  35.   // 监听该socket  
  36.     ret = listen(s_fdListen, 4);  
  37.     if (ret < 0) {  
  38.         LOGE("Failed to listen on control socket ‘%d‘: %s",s_fdListen, strerror(errno));  
  39.         exit(-1);  
  40.     }  
  41.     /* 设置s_listen_event事件,一旦有客户端连接,即s_fdListen可读就会导致eventLoop工作线程中的select返回,因为该事件不是持久的,因此调用为listenCallback处理完后,将从watch_table移除该事件,所以Rild只支持一个客户端连接*/  
  42.   ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);  
  43.     /* 添加s_listen_event事件,并触发eventLoop工作线程 */  
  44.     rilEventAddWakeup (&s_listen_event);  
  45. #if 1  
  46.     // 得到调试socket的句柄rild-debug  
  47.     s_fdDebug = android_get_control_socket(SOCKET_NAME_RIL_DEBUG);  
  48.     if (s_fdDebug < 0) {  
  49.         LOGE("Failed to get socket ‘" SOCKET_NAME_RIL_DEBUG "‘ errno:%d", errno);  
  50.         exit(-1);  
  51.   }  
  52.   //监听该socket  
  53.     ret = listen(s_fdDebug, 4);  
  54.     if (ret < 0) {  
  55.         LOGE("Failed to listen on ril debug socket ‘%d‘: %s",s_fdDebug, strerror(errno));  
  56.         exit(-1);  
  57.   }  
  58.     /* 设置s_debug_event事件 */  
  59.     ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL);  
  60.     /* 添加s_debug_event事件,并触发eventLoop工作线程  */  
  61.     rilEventAddWakeup (&s_debug_event);  
  62. #endif  
  63. }  

打开监听端口,接收来自客户端进程的命令请求,当与客户进程连接建立时调用listenCallback函数,创建单独线程监视并处理所有事件源。

1.客户端连接处理

s_listen_event事件用于处理上层客户端的socket连接,当得到socket连接请求时,eventLoop工作线程里的select返回并自动调用listenCallback回调函数进行处理:

[cpp] view plaincopy
 
  1. tatic void listenCallback (int fd, short flags, void *param) {  
  2.     int ret;  
  3.     int err;  
  4.     int is_phone_socket;  
  5.     RecordStream *p_rs;  
  6.     commthread_data_t *user_data = NULL;  
  7.     user_data =(commthread_data_t *)malloc(sizeof(commthread_data_t));  
  8.     struct sockaddr_un peeraddr;  
  9.     socklen_t socklen = sizeof (peeraddr);  
  10.     struct ucred creds;  
  11.     socklen_t szCreds = sizeof(creds);  
  12.     struct passwd *pwd = NULL;  
  13.     assert (s_fdCommand < 0);  
  14.   assert (fd == s_fdListen);  
  15.   //接收一个客户端的连接,并将该socket连接保存在变量s_fdCommand中  
  16.     s_fdCommand = accept(s_fdListen, (sockaddr *) &peeraddr, &socklen);  
  17.     if (s_fdCommand < 0 ) {  
  18.         LOGE("Error on accept() errno:%d", errno);  
  19.         /* start listening for new connections again */  
  20.         rilEventAddWakeup(&s_listen_event);  
  21.           return;  
  22.     }  
  23.     /* 对客户端权限判断,判断是否是进程组ID为radio的进程发起的连接*/  
  24.     errno = 0;  
  25.     is_phone_socket = 0;  
  26.     err = getsockopt(s_fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);  
  27.     if (err == 0 && szCreds > 0) {  
  28.         errno = 0;  
  29.         pwd = getpwuid(creds.uid);  
  30.         if (pwd != NULL) {  
  31.             if (strcmp(pwd->pw_name, PHONE_PROCESS) == 0) {  
  32.                 is_phone_socket = 1;  
  33.             } else {  
  34.                 LOGE("RILD can‘t accept socket from process %s", pwd->pw_name);  
  35.             }  
  36.         } else {  
  37.             LOGE("Error on getpwuid() errno: %d", errno);  
  38.         }  
  39.     } else {  
  40.         LOGD("Error on getsockopt() errno: %d", errno);  
  41.     }  
  42.       
  43.     if ( !is_phone_socket ) {  
  44.       LOGE("RILD must accept socket from %s", PHONE_PROCESS);  
  45.       close(s_fdCommand);  
  46.       s_fdCommand = -1;  
  47.       onCommandsSocketClosed();  
  48.       /* start listening for new connections again */  
  49.       rilEventAddWakeup(&s_listen_event);  
  50.       return;  
  51.     }  
  52. #if 0  
  53.     if(s_dualSimMode) {  
  54.         if(s_sim_num == 0) {  
  55.             property_get(SIM_POWER_PROPERTY, prop, "0");  
  56.             if(!strcmp(prop, "0")) {  
  57.                 property_set(SIM_POWER_PROPERTY, "1");  
  58.                 s_callbacks.powerSIM(NULL);  
  59.             }  
  60.         } else if(s_sim_num == 1) {  
  61.             property_get(SIM_POWER_PROPERTY1, prop, "0");  
  62.             if(!strcmp(prop, "0")) {  
  63.                 property_set(SIM_POWER_PROPERTY1, "1");  
  64.                 s_callbacks.powerSIM(NULL);  
  65.             }  
  66.         }  
  67.     } else {  
  68.         property_get(SIM_POWER_PROPERTY, prop, "0");  
  69.         if(!strcmp(prop, "0")) {  
  70.             property_set(SIM_POWER_PROPERTY, "1");  
  71.             s_callbacks.powerSIM(NULL);  
  72.         }  
  73.     }  
  74. #endif  
  75.     //p_rs为RecordStream类型,它内部会分配一个缓冲区来存储客户端发送过来的数据  
  76.   p_rs = record_stream_new(s_fdCommand, MAX_COMMAND_BYTES);  
  77.   //添加一个针对接收到的客户端连接的处理事件,从而在eventLoop工作线程中处理该客户端的各种请求  
  78.     ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs);  
  79.     rilEventAddWakeup (&s_commands_event);  
  80.     onNewCommandConnect();  
  81. }  

2.客户端通信处理

在listenCallback中首先接收客户端的连接请求,并验证客户端的权限,同时将该客户端以事件的形式添加到eventLoop工作线程中进行监控,当该客户端有数据请求时,eventLoop工作线程从select中返回,并自动调用processCommandsCallback回调函数:

[cpp] view plaincopy
 
  1. static void processCommandsCallback(int fd, short flags, void *param) {  
  2.     RecordStream *p_rs;  
  3.     void *p_record;  
  4.     size_t recordlen;  
  5.     int ret;  
  6.     assert(fd == s_fdCommand);  
  7.     p_rs = (RecordStream *)param;  
  8.   for (;;) { //循环处理客户端发送过来的AT命令  
  9.       //读取一条AT命令  
  10.         ret = record_stream_get_next(p_rs, &p_record, &recordlen);  
  11.         if (ret == 0 && p_record == NULL) {  
  12.             break;  
  13.         } else if (ret < 0) {  
  14.             break;  
  15.         } else if (ret == 0) { /* && p_record != NULL */  
  16.             //处理客户端发送过来的AT命令  
  17.             processCommandBuffer(p_record, recordlen);  
  18.         }  
  19.     }  
  20.     if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {  
  21.         if (ret != 0) {  
  22.             LOGE("error on reading command socket errno:%d\n", errno);  
  23.         } else {  
  24.             LOGW("EOS.  Closing command socket.");  
  25.         }  
  26.         close(s_fdCommand);  
  27.         s_fdCommand = -1;  
  28.         ril_event_del(&s_commands_event);  
  29.         record_stream_free(p_rs);  
  30.         rilEventAddWakeup(&s_listen_event);  
  31.         onCommandsSocketClosed();  
  32.     }  
  33. }  

通过processCommandBuffer函数来处理每一条AT命令:

[cpp] view plaincopy
 
  1. static int processCommandBuffer(void *buffer, size_t buflen) {  
  2.     Parcel p;  
  3.     status_t status;  
  4.     int32_t request;  
  5.     int32_t token;  
  6.     RequestInfo *pRI;  
  7.     int ret;  
  8.     p.setData((uint8_t *) buffer, buflen);  
  9.     // status checked at end  
  10.     status = p.readInt32(&request);  
  11.     status = p.readInt32 (&token);  
  12.     if (status != NO_ERROR) {  
  13.         LOGE("invalid request block");  
  14.         return 0;  
  15.     }  
  16.     if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {  
  17.         LOGE("unsupported request code %d token %d", request, token);  
  18.         return 0;  
  19.     }  
  20.     pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));  
  21.     pRI->token = token; //AT命令标号  
  22.     pRI->pCI = &(s_commands[request]); //根据request找到s_commands命令数组中的指定AT命令  
  23.     ret = pthread_mutex_lock(&s_pendingRequestsMutex);  
  24.     assert (ret == 0);  
  25.     pRI->p_next = s_pendingRequests;  
  26.     s_pendingRequests = pRI;  
  27.     ret = pthread_mutex_unlock(&s_pendingRequestsMutex);  
  28.   assert (ret == 0);  
  29.   //调用指定AT命令的dispatch函数,根据接收来自客户进程的命令和参数,调用onRequest进行处理。  
  30.     pRI->pCI->dispatchFunction(p, pRI);  
  31.     return 0;  
  32. }  

打电话的AT命令:{RIL_REQUEST_DIAL, dispatchDial, responseVoid},

发短信的AT命令:{RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS},

3.电话拨打流程

 
[cpp] view plaincopy
 
  1. static void dispatchDial (Parcel &p, RequestInfo *pRI) {  
  2.   RIL_Dial dial; //RIL_Dial存储了打电话的所有信息  
  3.     RIL_UUS_Info uusInfo;   
  4.     int32_t sizeOfDial;  
  5.     int32_t t;  
  6.     .................. //初始化dial变量    
  7.   s_callbacks.onRequest(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI);  
  8.   .................  
  9.     return;  
  10. }  

s_callbacks.onRequest其实就是调用RIL_RadioFunctions中的onRequest函数,该函数在前面已介绍过了。

[cpp] view plaincopy
 
  1. static void onRequest (int request, void *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     switch (request) {  
  4.         case RIL_REQUEST_DIAL:  
  5.             requestDial(data, datalen, t);  
  6.             break;  
  7.     }  
  8. }  
[cpp] view plaincopy
 
  1. static void requestDial(void *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     RIL_Dial *p_dial;  
  4.     char *cmd;  
  5.     const char *clir;  
  6.     int ret;  
  7.     p_dial = (RIL_Dial *)data;  
  8.     switch (p_dial->clir) {  
  9.         case 1: clir = "I"; break;  /*invocation*/  
  10.         case 2: clir = "i"; break;  /*suppression*/  
  11.         default:  
  12.         case 0: clir = ""; break;   /*subscription default*/  
  13.   }  
  14.   //向串口发送AT指令  
  15.     ret = at_send_command(cmd, NULL);  
  16.   free(cmd);  
  17.   //通知请求结果  
  18.     RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  19. }  

向AT发送完拨号指令后,通过RIL_onRequestComplete返回处理结果,RIL_onRequestComplete实际上是RIL_Env中的OnRequestComplete函数,在前面我们也介绍过了

[cpp] view plaincopy
 
  1. extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {  
  2.     RequestInfo *pRI;  
  3.     int ret;  
  4.     size_t errorOffset;  
  5.   pRI = (RequestInfo *)t;  
  6.   //该请求已经处理,需要从请求队列中移除该请求  
  7.     if (!checkAndDequeueRequestInfo(pRI)) {  
  8.         LOGE ("RIL_onRequestComplete: invalid RIL_Token");  
  9.         return;  
  10.     }  
  11.     if (pRI->local > 0) {  
  12.         ...........  
  13.         sendResponse(p);  
  14.     }  
  15. done:  
  16.     free(pRI);  
  17. }  
 
[cpp] view plaincopy
 
  1. static int sendResponse (Parcel &p) {  
  2.     return sendResponseRaw(p.data(), p.dataSize()); //将结果发送给JAVA RIL客户端  
  3. }  
 
[cpp] view plaincopy
 
  1. static int sendResponseRaw (const void *data, size_t dataSize) {  
  2.     int fd = s_fdCommand;  
  3.     int ret;  
  4.     uint32_t header;  
  5.     if (s_fdCommand < 0) {  
  6.         return -1;  
  7.     }  
  8.     if (dataSize > MAX_COMMAND_BYTES) {  
  9.         return -1;  
  10.     }  
  11.     pthread_mutex_lock(&s_writeMutex);  
  12.     header = htonl(dataSize);  
  13.     ret = blockingWrite(fd, (void *)&header, sizeof(header));  
  14.     if (ret < 0) {  
  15.         pthread_mutex_unlock(&s_writeMutex);  
  16.         return ret;  
  17.     }  
  18.     ret = blockingWrite(fd, data, dataSize);  
  19.     if (ret < 0) {  
  20.         pthread_mutex_unlock(&s_writeMutex);  
  21.         return ret;  
  22.     }  
  23.     pthread_mutex_unlock(&s_writeMutex);  
  24.     return 0;  
  25. }  

拨打电话的时序图如下:


Rild通过onRequest向动态库提交一个请求,然后返回,动态库处理完请求后,处理结果通过回调接口通知客户端