首页 > 代码库 > POJ - 3278
POJ - 3278
Catch That Cow
Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
Source
USACO 2007 Open Silver
双向宽搜,判重数组开到20万。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <algorithm> 6 #include <string> 7 #include <vector> 8 #include <queue> 9 #include <stack>10 #include <set>11 #include <map>12 #include <limits.h>13 #include <bitset>14 #define F "%I64d"15 using namespace std;16 typedef long long ll;17 int dp[2][200000],N,K;18 queue<int> QN,QK;19 int bfs()20 {21 while(!QN.empty())QN.pop();22 while(!QK.empty())QK.pop();23 memset(dp,-1,sizeof dp);24 QN.push(N);25 QK.push(K);26 dp[0][N] = dp[1][K] = 0;27 while(1)28 {29 if(QN.front() > 1 && dp[0][QN.front() - 1] == -1)30 {31 dp[0][QN.front() - 1] = dp[0][QN.front()] + 1;32 if(dp[1][QN.front() - 1] != -1)return dp[0][QN.front() - 1] + dp[1][QN.front() - 1];33 QN.push(QN.front() - 1);34 }35 if(QN.front() < 100000 && dp[0][QN.front() + 1] == -1)36 {37 dp[0][QN.front() + 1] = dp[0][QN.front()] + 1;38 if(dp[1][QN.front() + 1] != -1)return dp[0][QN.front() + 1] + dp[1][QN.front() + 1];39 QN.push(QN.front() + 1);40 }41 if(QN.front() < 100000 && dp[0][QN.front() << 1] == -1)42 {43 dp[0][QN.front() << 1] = dp[0][QN.front()] + 1;44 if(dp[1][QN.front() << 1] != -1)return dp[0][QN.front() << 1] + dp[1][QN.front() << 1];45 QN.push(QN.front() << 1);46 }47 if(QK.front() > 1 && dp[1][QK.front() - 1] == -1)48 {49 dp[1][QK.front() - 1] = dp[1][QK.front()] + 1;50 if(dp[0][QK.front() - 1] != -1)return dp[1][QK.front() - 1] + dp[0][QK.front() - 1];51 QK.push(QK.front() - 1);52 }53 if(QK.front() < 100000 && dp[1][QK.front() + 1] == -1)54 {55 dp[1][QK.front() + 1] = dp[1][QK.front()] + 1;56 if(dp[0][QK.front() + 1] != -1)return dp[1][QK.front() + 1] + dp[0][QK.front() + 1];57 QK.push(QK.front() + 1);58 }59 if((QK.front() & 1) == 0 && dp[1][QK.front() >> 1] == -1)60 {61 dp[1][QK.front() >> 1] = dp[1][QK.front()] + 1;62 if(dp[0][QK.front() >> 1] != -1)return dp[1][QK.front() >> 1] + dp[0][QK.front() >> 1];63 QK.push(QK.front() >> 1);64 }65 QN.pop();66 QK.pop();67 }68 }69 int main()70 {71 N: while(~scanf("%d%d",&N,&K))72 {73 if(abs(N - K) <= 1){printf("%d\n",abs(N - K));continue;}74 if((N << 1) == K){puts("1");continue;}75 if(K < N){printf("%d\n",N - K);continue;}76 printf("%d\n",bfs());77 }78 return 0;79 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。