首页 > 代码库 > POJ 3278 Catch That Cow

POJ 3278 Catch That Cow

Catch That Cow
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 48127 Accepted: 15077

Description

Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.

* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.

If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?

Input

Line 1: Two space-separated integers: N and K

Output

Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.

Sample Input

5 17

Sample Output

4

Hint

The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
 
  算法分析:bfs的一道搜索题目,一开始我以为应该是去找到某种 统一的算法公式来计算从 “起点数字” 到“终点数字”的最小步骤数
                    可是想了半天都没有思路,最后想到了暴力解决问题。
             可这不是bfs的算法题吗?
             不错,并非是普通的线性暴力搜索,需要用到bfs的思想。仔细分析便可知道,计算机程序做不到动态的决定从当前的这一
             步该怎样继续走下去 所达到的结果最优!(只限在本题)
             所以我们的思路就是:从“当前节点”出发,可以到到其余3个节点,这三个节点又可以分别到达3个节点,加起来就是9个点了,
             当然这9个点可能会出现重复的点,也就是说,如果该点已经被访问过了,也就没有再访问的必要了。所以要用到标记术数组。
             如此继续下去,判断每一个可到达的点是不是终点即可,如果该点是 终点,返回 到达“当前节点”的步数统计数(用数组来记录)。
    
           
#include <iostream>#include <stdio.h>#include <string.h>#include <queue>#include <algorithm>using namespace std;int vis[101000], dis[101000];int bfs(int n, int k){    queue<int>q; //简历队列    q.push(n); //将起点入队列    vis[n]=1; //标记起点被访问    dis[n]=0; //此时起点到自身的步数为0    int curpos; //当前节点    while(!q.empty() ) //判断队列不为空    {        curpos=q.front();  //取出当前队首元素        q.pop();                 if(curpos == k) //如果等于终点        {            return dis[curpos];  //返回步数        }        else        {            if(curpos-1>=0 && curpos<=100000 && vis[curpos-1]==0 ) //判断此点是否可行            {                q.push(curpos-1);  //如果行,进入队列 待命                vis[curpos-1]=1;   //标记该点被访问,以后不要被重复访问了                dis[curpos-1]=dis[curpos]+1; // 到达此点的步数 == 当前点的步数+1            }            if(curpos+1>=0 && curpos+1<=100000 && vis[curpos+1]==0 ) //类推            {                q.push(curpos+1);                vis[curpos+1]=1;                dis[curpos+1]=dis[curpos]+1;            }            if(curpos*2>=0 && curpos*2<=100000 && vis[curpos*2]==0 ) //类推            {                q.push(curpos*2);                vis[curpos*2]=1;                dis[curpos*2]=dis[curpos]+1;            }        }    }    return 0;}int main(){    int n, k;    while(scanf("%d %d", &n, &k)!=EOF)    {        memset(vis, 0, sizeof(vis));        memset(dis, 0, sizeof(dis));        printf("%d\n", bfs(n, k));    }    return 0;}

 

POJ 3278 Catch That Cow