首页 > 代码库 > 机器学习系统设计--1.4
机器学习系统设计--1.4
Building Machine Learning Systems with Python
-------------------
代码:
https://github.com/Leechen2014/1400OS_01_Codes
author 振在远方
---------------------
偶然间得到一本书:<<机器学习系统设计>> , 于是有了想看的冲动. 并且在github上上传了相关代码. 希望通过这本书可以打开通往机器学习的大门.
---来自一个在机器学习道路上的学前班学生的独白
整个代码中比较重要的就是这个函数了:
因此就以这个function展开话题:
程序流程图:
通过阅读我们发现:
这个函数主要做了以下几步:
- 接收原始数据X Y 以及创建的模型
- 绘制出原始数据的点分布
- 根据模型(如果有的话)绘制出拟合函数
- 设置图标的其他属性并且保存
1.1 接收原始数据X Y 以及创建的模型
在解析之前,有必要先说说 x , y 从哪里来的? x,y的数据结构是什么样的? x y代表什么?
1 通过阅读代码可以知道 x,y 是在预处理的时候获取的,如下图所示
12-14行可知
data是二维的矩阵 ;由于tsv文件的数据是以一个tab键(制表符)作为分隔符的,xy 就是从这个文件中读取过来的
可以这样读取:
data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "data")
data = http://www.mamicode.com/sp.genfromtxt(os.path.join(data_dir,"web_traffic.tsv"), delimiter=‘\t‘)
读取之后,的内容是通过sp.genfromtxt()函数转化为矩阵了. 因此可以通过对矩阵的操作读取文件中第一列和第二列:
26-27: x,y 是从data中获取的两列数据。 这样一来就知道x y的数据结构是向量vector/array
x = data[:, 0]
y = data[:, 1]
24-26 : 是把原始数据中的not a number 元素剔除了
x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
1.2 绘制出原始数据的点分布
Python 的plt.scatter(x[] , y[]) 用于在plt对象中绘制点,其坐标为 (x[i],y[i]) , 这种写法和C/matlab的风格很像
plt.scatter(x, y) # make a scatter plit of x y , where x and y are sequnce like obj of the same length
绘制图表上的x, y轴的说明:
plt.xlabel("Time")
plt.ylabel("Hits/hours")
其实就是这里:
接下来就是绘制x 和y 轴想的标志点
plt.xticks([w * 7 * 24 for w in range(10)], [‘week %i‘ % w for w in range(10)]) #get or set x-limites of current tick localti
plt.xticks(dis[] , name[]) 这函数接受两个参数, 第一个参数指明坐标 , 第二个参数指明对应的名称; 其实就是这个:
plt.autoscale(tight=True) #设置图片自动缩放
plt.ylim(ymin=0) #设置y轴的最小值
if ymax: #设置y轴的最大值
plt.ylim(ymax=ymax)
if xmin: # 设置x轴的最小值
plt.xlim(xmin=xmin)
plt.grid(True, linestyle=‘-‘, color=‘0.75‘) # 设置是都绘制网格,以及网格的颜色
plt.savefig(fname) # 保存图片
1.3 根据模型(如果有的话)绘制出拟合函数
这小结中需要了解: 模型怎么建立的? 如何使用模型?
1.3.1 如何使用模型?
首先看看如何使用模型来绘制曲线:
通过阅读 我们知道 这个模型应该线性模型 , 因为:
plt.plot(mx, model(mx), linestyle=style, linewidth=2, c=color)# 这句话是绘制一条曲线, 第一个参数是自变量,第二个参数是因变量,因变量是由模型model()根据自变量产生的 。 并且指定曲线的风格和曲线的宽度 颜色
最后绘制曲线的标志 :
这句话产生的效果如下:
PS 此处的函数解析详见:
http://matplotlib.org/api/pyplot_summary.html#
https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
https://docs.scipy.org/doc/scipy/reference/genindex.html
1.3.2 模型怎么建立的?
这些模型是怎么建立的呢? 又是如何实现的? how implications? 我想这个应该是大家最关心的 , 因为特意放在最后:
先说说how implimention 其实思想很简单:
我们在高中学过线性拟合的知识 , 这个就是利用线性拟合的方式来制造曲线......
不会? 没关系, python已经提供了API :
polyfit是拟合的意思, 其中这个里面的第一, 二个参数中是原始中点的x , y 轴坐标. 第三个参数是自由度(x的最高次方). full是设置返回值的性质,如果是false返回的是拟合函数的系数. 如果是ture 则会把与这个系数相关所有内容返回,比如 二次方程的系数, 误差, ,,,,
具体详见 https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
你看看 , 这个程序说白了 是计算了一个咱们高中学的一个线性拟合相关的算法( 大学的概率论中也有提到) , 所以数学很重要
---------------------
最后说说我的感悟:
说实话, 一个一个字coding确实很不容易, 认为比较简单的部分就省略了. 对我这五个python初学者来说, 把python中的函数理清楚比较实在些, 所以在整理的时候会提更多的倾向于讲解python中的函数
----------------------------
问几个问题, 希望看到的同学可以留言:
1 这个程序算是机器学习么?
2 机器学习的有监督学习中往往会说label (标记)和提取特征值(extra feature)
机器学习系统设计--1.4