首页 > 代码库 > 机器学习

机器学习

 

将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下:

技术分享

主要针对MLlib进行总结

分类与回归

分类和回归是监督式学习;

监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果。其中标签数据是指已知结果的特征数据。

分类和回归的区别:预测结果的变量类型

  分类预测出来的变量是离散的(比如对邮件的分类,垃圾邮件和非垃圾邮件),对于二元分类的标签是0和1,对于多元分类标签范围是0~C-1,C表示类别数目;

  回归预测出来的变量是连续的(比如根据年龄和体重预测身高)

 

线性回归

  线性回归是回归中最常用的方法之一,是指用特征的线性组合来预测输出值。

  线性回归算法可以使用的类有:

    LinearRegressionWithSGD
    RidgeRegressionWithSGD
    LassoWithSGD

  参数:

    stepSize:梯度下降的步数

    numIterations:迭代次数

    设置intercept:是否给数据加上一个干扰特征或者偏差特征,一个始终值为1的特征,默认不增加false

  {stepSize: 1.0, numIterations: 100, miniBatchFraction: 1.0}

  模型的使用:

    1、对数据进行预测,使用model.predict()

    2、获取数据特征的权重model.weights()

  模型的评估:

    均方误差

例子:

 

import org.apache.spark.{SparkContext, SparkConf}import org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.regression.LinearRegressionModelimport org.apache.spark.mllib.regression.LinearRegressionWithSGDimport org.apache.spark.mllib.linalg.Vectors/**  * Created by Edward on 2016/9/21.  */object LinearRegression {  def main(args: Array[String]) {    val conf: SparkConf = new SparkConf().setAppName("LinearRegression").setMaster("local")    val sc = new SparkContext(conf)    // Load and parse the data    val data = http://www.mamicode.com/sc.textFile("data/mllib/ridge-data/lpsa.data")    val parsedData = data.map { line =>      val parts = line.split(‘,‘)      LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(‘ ‘).map(_.toDouble)))    }.cache()    // Building the model    val numIterations = 100    val model = LinearRegressionWithSGD.train(parsedData, numIterations)//    var lr = new LinearRegressionWithSGD().setIntercept(true)//    val model = lr.run(parsedData)    //获取特征权重,及干扰特征    println("weights:%s, intercept:%s".format(model.weights,model.intercept))    // Evaluate model on training examples and compute training error    val valuesAndPreds = parsedData.map { point =>      val prediction = model.predict(point.features)      (point.label, prediction)    }    //计算 均方误差    val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()    println("training Mean Squared Error = " + MSE)    // Save and load model    model.save(sc, "myModelPath")    val sameModel = LinearRegressionModel.load(sc, "myModelPath")  }}

 

数据:

-0.4307829,-1.63735562648104 -2.00621178480549 -1.86242597251066 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306-0.1625189,-1.98898046126935 -0.722008756122123 -0.787896192088153 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306-0.1625189,-1.57881887548545 -2.1887840293994 1.36116336875686 -1.02470580167082 -0.522940888712441 -0.863171185425945 0.342627053981254 -0.155348103855541-0.1625189,-2.16691708463163 -0.807993896938655 -0.787896192088153 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.8644665073373060.3715636,-0.507874475300631 -0.458834049396776 -0.250631301876899 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.8644665073373060.7654678,-2.03612849966376 -0.933954647105133 -1.86242597251066 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
...

数据第一列表示标签数据,也就是结果数据,其他列表示特征数据;

预测就是再给一组特征数据,预测结果;

结果:

weights:[0.5808575763272221,0.18930001482946976,0.2803086929991066,0.1110834181777876,0.4010473965597895,-0.5603061626684255,-0.5804740464000981,0.8742741176970946], intercept:0.0
training Mean Squared Error = 6.207597210613579

 

 

 

持续更新中...

 

机器学习