首页 > 代码库 > Spark机器学习· 实时机器学习
Spark机器学习· 实时机器学习
Spark机器学习
1 在线学习
模型随着接收的新消息,不断更新自己;而不是像离线训练一次次重新训练。
2 Spark Streaming
- 离散化流(DStream)
-
输入源:Akka actors、消息队列、Flume、Kafka、……
http://spark.apache.org/docs/latest/streaming-programming-guide.html
-
类群(lineage):应用到RDD上的转换算子和执行算子的集合
3 MLib+Streaming应用
3.0 build.sbt
依赖Spark MLlib和Spark Streaming
name := "scala-spark-streaming-app"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.5.1"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.5.1"
使用国内镜像仓库
~/.sbt/repositories
[repositories]
local
osc: http://maven.oschina.net/content/groups/public/
typesafe: http://repo.typesafe.com/typesafe/ivy-releases/, [organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-[classifier]).[ext], bootOnly
sonatype-oss-releases
maven-central
sonatype-oss-snapshots
3.1 生产消息
object StreamingProducer {
def main(args: Array[String]) {
val random = new Random()
// Maximum number of events per second
val MaxEvents = 6
// Read the list of possible names
val namesResource = this.getClass.getResourceAsStream("/names.csv")
val names = scala.io.Source.fromInputStream(namesResource)
.getLines()
.toList
.head
.split(",")
.toSeq
// Generate a sequence of possible products
val products = Seq(
"iPhone Cover" -> 9.99,
"Headphones" -> 5.49,
"Samsung Galaxy Cover" -> 8.95,
"iPad Cover" -> 7.49
)
/** Generate a number of random product events */
def generateProductEvents(n: Int) = {
(1 to n).map { i =>
val (product, price) = products(random.nextInt(products.size))
val user = random.shuffle(names).head
(user, product, price)
}
}
// create a network producer
val listener = new ServerSocket(9999)
println("Listening on port: 9999")
while (true) {
val socket = listener.accept()
new Thread() {
override def run = {
println("Got client connected from: " + socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream(), true)
while (true) {
Thread.sleep(1000)
val num = random.nextInt(MaxEvents)
val productEvents = generateProductEvents(num)
productEvents.foreach{ event =>
out.write(event.productIterator.mkString(","))
out.write("\n")
}
out.flush()
println(s"Created $num events...")
}
socket.close()
}
}.start()
}
}
}
sbt run
Multiple main classes detected, select one to run:
[1] MonitoringStreamingModel
[2] SimpleStreamingApp
[3] SimpleStreamingModel
[4] StreamingAnalyticsApp
[5] StreamingModelProducer
[6] StreamingProducer
[7] StreamingStateApp
Enter number: 6
3.2 打印消息
阅读全文请点击:http://click.aliyun.com/m/8713/
Spark机器学习· 实时机器学习
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。