首页 > 代码库 > hdu 1757 A Simple Math Problem(矩阵快速幂)
hdu 1757 A Simple Math Problem(矩阵快速幂)
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2512 Accepted Submission(s): 1461
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
Author
linle
题解及代码:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; const int mod=1e9; struct mat { __int64 t[10][10]; void set() { memset(t,0,sizeof(t)); } } a,b,c; mat multiple(mat a,mat b,int n,int p) { int i,j,k; mat temp; temp.set(); for(i=0; i<n; i++) for(j=0; j<n; j++) { if(a.t[i][j]!=0) for(k=0; k<n; k++) temp.t[i][k]=(temp.t[i][k]+a.t[i][j]*b.t[j][k]+p)%p; } return temp; } mat quick_mod(mat b,int n,int m,int p) { mat t; t.set(); for(int i=0;i<n;i++) t.t[i][i]=1; while(m) { if(m&1) { t=multiple(t,b,n,p); } m>>=1; b=multiple(b,b,n,p); } return t; } void init(int a[]) { b.set(); for(int i=0;i<10;i++) { for(int j=0;j<10;j++) if(j==9) b.t[i][j]=a[i]; else if(i==j+1) b.t[i][j]=1; } /*for(int i=0;i<=9;i++) { for(int j=0;j<=9;j++) cout<<b.t[i][j]<<" "; puts(""); } */ } int main() { int k,M; int s[10]; while(cin>>k>>M) { for(int i=9;i>=0;i--) cin>>s[i]; if(k<10) { cout<<k%M<<endl; continue; } init(s); a=quick_mod(b,10,k,M); __int64 ans=0; for(int i=0;i<=9;i++) { ans=(ans+i*a.t[i][0])%M; } cout<<ans<<endl; } return 0; } /* 简单的矩阵快速幂,上面的代码可以用地做模版, 当然inin()除外,init()用来所有矩阵的初始化。 这道题关键就是矩阵的构造了: 令矩阵a=|0 1 2 3 4 5 6 7 8 9| 矩阵b是转换矩阵,下面: |0 0 0 0 0 0 0 0 0 a[9]| |1 0 0 0 0 0 0 0 0 a[8]| |0 1 0 0 0 0 0 0 0 a[7]| |0 0 1 0 0 0 0 0 0 a[6]| |0 0 0 1 0 0 0 0 0 a[5]| |0 0 0 0 1 0 0 0 0 a[4]| |0 0 0 0 0 1 0 0 0 a[3]| |0 0 0 0 0 0 1 0 0 a[2]| |0 0 0 0 0 0 0 1 0 a[1]| |0 0 0 0 0 0 0 0 1 a[0]| 其余就是套模版就行了。 */
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。