首页 > 代码库 > POJ 1273 Drainage Ditches (网络最大流)
POJ 1273 Drainage Ditches (网络最大流)
http://poj.org/problem?id=1273
Drainage Ditches
Description Every time it rains on Farmer John‘s fields, a pond forms over Bessie‘s favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie‘s clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. Input The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. Output For each case, output a single integer, the maximum rate at which water may emptied from the pond. Sample Input 5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10 Sample Output 50 Source USACO 93 |
n条边,m个点,1是源点,m是汇点,给出各有向边容量,求最大流。
#include<cstdio> #include<iostream> #include<cstdlib> #include<algorithm> #include<ctime> #include<cctype> #include<cmath> #include<string> #include<cstring> #include<stack> #include<queue> #include<list> #include<vector> #include<map> #include<set> #define sqr(x) ((x)*(x)) #define LL long long #define itn int #define INF 0x3f3f3f3f #define PI 3.1415926535897932384626 #define eps 1e-10 #define maxm 207<<2 #define maxn 207 using namespace std; int fir[maxn],d[maxn]; int u[maxm],v[maxm],cap[maxm],flow[maxm],rev[maxm],nex[maxm]; int e_max; int q[maxm]; int p[maxn]; int n,m; int main() { #ifndef ONLINE_JUDGE freopen("/home/fcbruce/文档/code/t","r",stdin); #endif // ONLINE_JUDGE while (~scanf("%d %d",&n,&m)) { e_max=0; memset(fir,-1,sizeof fir); for (int i=0;i<n;i++) { int e=e_max++; scanf("%d %d %d",u+e,v+e,cap+e); nex[e]=fir[u[e]];fir[u[e]]=e;rev[e]=e+1; e=e_max++; u[e]=v[e-1];v[e]=u[e-1];cap[e]=0; nex[e]=fir[u[e]];fir[u[e]]=e;rev[e]=e-1; }//建图 int s=1,t=m,total_flow=0; memset(flow,0,sizeof flow); for (;;) { int f,r; memset(d,0,sizeof d); d[s]=INF; q[f=r=0]=s; while (f<=r) { int x=q[f++]; for (int e=fir[x];~e;e=nex[e]) { if (!d[v[e]] && cap[e]>flow[e]) { d[v[e]]=min(d[u[e]],cap[e]-flow[e]); p[v[e]]=e; q[++r]=v[e]; } } }//BFS找增广路 if (d[t]==0) break;//流量为0,无残量 //更新路径上的流量 for (int e=p[t];;e=p[u[e]]) { flow[e]+=d[t]; flow[rev[e]]-=d[t]; if (u[e]==s) break; } total_flow+=d[t]; } printf("%d\n",total_flow); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。