首页 > 代码库 > h.264 fast,1/2,1/4像素运动估计与插值处理

h.264 fast,1/2,1/4像素运动估计与插值处理

 Hadamard Transform

  在1/2,1/4像素运动估计这一阶段中,对于像素残差,可以选择采用哈达玛变换来代替离散余弦变换进行高低频的分离。

  优点:哈达玛矩阵全是+1,-1,因此只需要进行加减法就可以得到变换结果,比离散余弦变换更高效

  缺点:高低频分离效果没有离散余弦变换好,原始数据越是均匀分布,经转换后的数据越集中于边角,反之集中力越差

  在采用了哈达玛变换的情况,为了达到更精确的估计效果,计算像素残差的SAD需要更变为SATD,即对像素残差进行哈达玛矩阵变换后得到的矩阵元素的绝对值之和

 

  1/4像素参考图像像素采集,然后与当前块进行SAD方式如下:

  /*! ************************************************************************ * \brief * Functions for fast fractional分数、小数 pel motion estimation. * 1. int AddUpSADQuarter() returns SADT of a fractiona pel MV * 2. int FastSubPelBlockMotionSearch () proceed the fast fractional pel ME * \authors: Zhibo Chen *           Dept.of EE, Tsinghua Univ. * \date   : 2003.4  计算分块代价 ************************************************************************ */int AddUpSADQuarter(int pic_pix_x,int pic_pix_y,int blocksize_x,int blocksize_y,                    int cand_mv_x,int cand_mv_y, StorablePicture *ref_picture, pel_t**   orig_pic,                     int Mvmcost, int min_mcost,int useABT)//adaptive block transform{  int abort_search, y0, x0, rx0, ry0, ry;   pel_t *orig_line;  int   diff[16], *d;   int  mcost = Mvmcost;  int yy,kk,xx;  int   curr_diff[MB_BLOCK_SIZE][MB_BLOCK_SIZE]; // for ABT SATD calculation//2004.3.3  pel_t **ref_pic = ref_picture->imgY_ups;//经过插值的图像  参考图像  int img_width  = ref_picture->size_x;  int img_height = ref_picture->size_y;    for (y0=0, abort_search=0; y0<blocksize_y && !abort_search; y0+=4)//4*4块  {    ry0 = ((pic_pix_y+y0)<<2) + cand_mv_y;        for (x0=0; x0<blocksize_x; x0+=4)    {      rx0 = ((pic_pix_x+x0)<<2) + cand_mv_x;      d   = diff;            orig_line = orig_pic [y0  ];    ry=ry0;      *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);      *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);      *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);      *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+ 12, img_height, img_width);            orig_line = orig_pic [y0+1];    ry=ry0+4;      *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);      *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);      *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);      *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+ 12, img_height, img_width);            orig_line = orig_pic [y0+2];    ry=ry0+8;      *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);      *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);      *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);      *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+ 12, img_height, img_width);            orig_line = orig_pic [y0+3];    ry=ry0+12;      *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);      *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);      *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);      *d        = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+ 12, img_height, img_width);            if (!useABT)      {        if ((mcost += SATD (diff, input->hadamard)) > min_mcost)        {          abort_search = 1;//终止搜索          break;        }      }      else  // copy diff to curr_diff for ABT SATD calculation      {        for (yy=y0,kk=0; yy<y0+4; yy++)          for (xx=x0; xx<x0+4; xx++, kk++)            curr_diff[yy][xx] = diff[kk];      }    }  }    return mcost;}
View Code

 

 

快速子像素运动估计

  采用1/4像素为基准进行运动向量搜索,搜索起始点周围7x7的1/4像素范围(即当前像素与周围像素点之间的1/4像素点)。该模式只在子宏块(blocktype>3)时使用

 

 

  在进行搜索之前,需要确定搜索中心点,在前面的整像素搜索之后,得到的最佳搜索位置为整像素点(mvInt),但是预测运动向量(mvp)有可能不是处于整像素的位置,因此在确定搜索中心时,需要在mvInt与mvp间取最低cost的一个作为搜索中心

  搜索方式为the third step with a small search pattern(小菱形模板反复搜索)

  小范围的子像素搜索是线性的(JVT-F017r1   3.1.2),即基本上都是朝着一个方向进行的,因此循环次数取边界长度7,而不会去搜索该范围内所有的位置

int                                                   //  ==> minimum motion cost after searchFastSubPelBlockMotionSearch (pel_t**   orig_pic,      // <--  original pixel values for the AxB block                             int       ref,           // <--  reference frame (0... or -1 (backward))                             int       list,                             int       pic_pix_x,     // <--  absolute x-coordinate of regarded AxB block                             int       pic_pix_y,     // <--  absolute y-coordinate of regarded AxB block                             int       blocktype,     // <--  block type (1-16x16 ... 7-4x4)                             int       pred_mv_x,     // <--  motion vector predictor (x) in sub-pel units                             int       pred_mv_y,     // <--  motion vector predictor (y) in sub-pel units                             int*      mv_x,          // <--> in: search center (x) / out: motion vector (x) - in pel units                             int*      mv_y,          // <--> in: search center (y) / out: motion vector (y) - in pel units                             int       search_pos2,   // <--  search positions for    half-pel search  (default: 9)                             int       search_pos4,   // <--  search positions for quarter-pel search  (default: 9)                             int       min_mcost,     // <--  minimum motion cost (cost for center or huge value)                             double    lambda,                             int useABT)        // <--  lagrangian parameter for determining motion cost{  static int Diamond_x[4] = {-1, 0, 1, 0};//菱形搜索  static int Diamond_y[4] = {0, 1, 0, -1};  int   mcost;  int   cand_mv_x, cand_mv_y;    int   incr            = list==1 ? ((!img->fld_type)&&(enc_picture!=enc_frame_picture)&&(img->type==B_SLICE)) : (enc_picture==enc_frame_picture)&&(img->type==B_SLICE) ;//未见使用  int   list_offset   = ((img->MbaffFrameFlag)&&(img->mb_data[img->current_mb_nr].mb_field))? img->current_mb_nr%2 ? 4 : 2 : 0;  StorablePicture *ref_picture = listX[list+list_offset][ref];  pel_t **ref_pic = ref_picture->imgY_ups;    int   lambda_factor   = LAMBDA_FACTOR (lambda);  int   mv_shift        = 0;  int   check_position0 = (blocktype==1 && *mv_x==0 && *mv_y==0 && input->hadamard && !input->rdopt && img->type!=B_SLICE && ref==0);  int   blocksize_x     = input->blc_size[blocktype][0];  int   blocksize_y     = input->blc_size[blocktype][1];  int   pic4_pix_x      = (pic_pix_x << 2);  int   pic4_pix_y      = (pic_pix_y << 2);  int   max_pos_x4      = ((ref_picture->size_x/*img->width*/-blocksize_x+1)<<2);  int   max_pos_y4      = ((ref_picture->size_y/*img->height*/-blocksize_y+1)<<2);    int   min_pos2        = (input->hadamard ? 0 : 1);  int   max_pos2        = (input->hadamard ? max(1,search_pos2) : search_pos2);  int   search_range_dynamic,iXMinNow,iYMinNow,i;  int   iSADLayer,m,currmv_x,currmv_y,iCurrSearchRange;  int   search_range = input->search_range;  int   pred_frac_mv_x,pred_frac_mv_y,abort_search;  int   mv_cost;     int   pred_frac_up_mv_x, pred_frac_up_mv_y;    *mv_x <<= 2;  *mv_y <<= 2;  if ((pic4_pix_x + *mv_x > 1) && (pic4_pix_x + *mv_x < max_pos_x4 - 2) &&    (pic4_pix_y + *mv_y > 1) && (pic4_pix_y + *mv_y < max_pos_y4 - 2)   )//判断是否出界  {    PelY_14 = FastPelY_14;  }  else  {    PelY_14 = UMVPelY_14;  }    search_range_dynamic = 3;//dynamic动态  pred_frac_mv_x = (pred_mv_x - *mv_x)%4;  pred_frac_mv_y = (pred_mv_y - *mv_y)%4;     pred_frac_up_mv_x = (pred_MV_uplayer[0] - *mv_x)%4;  pred_frac_up_mv_y = (pred_MV_uplayer[1] - *mv_y)%4;    //SearchState 小数 pel search 插值像素搜索标记 ,搜索过的位置会被标记,被标记过的位置不会重新搜索  memset(SearchState[0],0,(2*search_range_dynamic+1)*(2*search_range_dynamic+1));    if(input->hadamard)  {    cand_mv_x = *mv_x;        cand_mv_y = *mv_y;        mv_cost = MV_COST (lambda_factor, mv_shift, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);        mcost = AddUpSADQuarter(pic_pix_x,pic_pix_y,blocksize_x,blocksize_y,cand_mv_x,cand_mv_y,ref_picture/*ref_pic*//*Wenfang Fu 2004.3.12*/,orig_pic,mv_cost,min_mcost,useABT);//计算分块和MV总代价    SearchState[search_range_dynamic][search_range_dynamic] = 1;    if (mcost < min_mcost)    {      min_mcost = mcost;      currmv_x = cand_mv_x;      currmv_y = cand_mv_y;     }  }  else  {    SearchState[search_range_dynamic][search_range_dynamic] = 1;    currmv_x = *mv_x;    currmv_y = *mv_y;   }    if(pred_frac_mv_x!=0 || pred_frac_mv_y!=0)//mvp  {    cand_mv_x = *mv_x + pred_frac_mv_x;        cand_mv_y = *mv_y + pred_frac_mv_y;        mv_cost = MV_COST (lambda_factor, mv_shift, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);        mcost = AddUpSADQuarter(pic_pix_x,pic_pix_y,blocksize_x,blocksize_y,cand_mv_x,cand_mv_y,ref_picture/*ref_pic*//*Wenfang Fu 2004.3.12*/,orig_pic,mv_cost,min_mcost,useABT);    SearchState[cand_mv_y -*mv_y + search_range_dynamic][cand_mv_x - *mv_x + search_range_dynamic] = 1;    if (mcost < min_mcost)    {      min_mcost = mcost;      currmv_x = cand_mv_x;      currmv_y = cand_mv_y;     }  }      iXMinNow = currmv_x;//iXMinNow当前搜索中心  currmv_x最佳MV  iYMinNow = currmv_y;  iCurrSearchRange = 2*search_range_dynamic+1;   //采用iCurrSearchRange,总面积是iCurrSearchRange*iCurrSearchRange  //而采用一条边作为搜索范围,表明是单一方向的搜索,  //为什么呢,因为小范围内的搜索一般都是低频,即搜索方向不会有太大变化  //JVT-F017r1   3.1.2  for(i=0;i<iCurrSearchRange;i++)   {    abort_search=1;//终止搜索标记 1终止 0继续    iSADLayer = 65536;    for (m = 0; m < 4; m++)    {      cand_mv_x = iXMinNow + Diamond_x[m];          cand_mv_y = iYMinNow + Diamond_y[m];             if(abs(cand_mv_x - *mv_x) <=search_range_dynamic && abs(cand_mv_y - *mv_y)<= search_range_dynamic)      {        if(!SearchState[cand_mv_y -*mv_y+ search_range_dynamic][cand_mv_x -*mv_x+ search_range_dynamic])//未被搜索        {          mv_cost = MV_COST (lambda_factor, mv_shift, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);                  mcost = AddUpSADQuarter(pic_pix_x,pic_pix_y,blocksize_x,blocksize_y,cand_mv_x,cand_mv_y,ref_picture/*ref_pic*//*Wenfang Fu 2004.3.12*/,orig_pic,mv_cost,min_mcost,useABT);          SearchState[cand_mv_y - *mv_y + search_range_dynamic][cand_mv_x - *mv_x + search_range_dynamic] = 1;          if (mcost < min_mcost)          {            min_mcost = mcost;            currmv_x = cand_mv_x;            currmv_y = cand_mv_y;             abort_search = 0;                       }        }      }    }    iXMinNow = currmv_x;    iYMinNow = currmv_y;    if(abort_search)      break;  }    *mv_x = currmv_x;  *mv_y = currmv_y;    //===== return minimum motion cost =====  return min_mcost;}
View Code

 

子像素运动估计

  搜索分为两个步骤:

  1. 搜索中心周围(包括中心)1/2像素的9个像素点,从中选择最佳位置
  2. 以最佳位置为中心,搜索周围1/4像素的9个像素点,从中选择最佳位置

/*! *********************************************************************** * \brief以确定的最佳像素点为中心,进行半像素估计,在以最佳半像素点为中心,进行 1/4像素估计 *    Sub pixel block motion search *********************************************************************** */int                                               //  ==> minimum motion cost after searchSubPelBlockMotionSearch (pel_t**   orig_pic,      // <--  original pixel values for the AxB block                         int       ref,           // <--  reference frame (0... or -1 (backward))                         int       list,          // <--  reference picture list                          int       pic_pix_x,     // <--  absolute x-coordinate of regarded AxB block                         int       pic_pix_y,     // <--  absolute y-coordinate of regarded AxB block                         int       blocktype,     // <--  block type (1-16x16 ... 7-4x4)                         int       pred_mv_x,     // <--  motion vector predictor (x) in sub-pel units                         int       pred_mv_y,     // <--  motion vector predictor (y) in sub-pel units                         int*      mv_x,          // <--> in: search center (x) / out: motion vector (x) - in pel units                         int*      mv_y,          // <--> in: search center (y) / out: motion vector (y) - in pel units                         int       search_pos2,   // <--  半像素搜索点的位置 (default: 9)                         int       search_pos4,   // <--  search positions for quarter-pel search  (default: 9)                         int       min_mcost,     // <--  minimum motion cost (cost for center or huge value)                         double    lambda         // <--  lagrangian parameter for determining motion cost                         ){  int   diff[16], *d;  int   pos, best_pos, mcost, abort_search;  int   y0, x0, ry0, rx0, ry;  int   cand_mv_x, cand_mv_y;  int   max_pos_x4, max_pos_y4;  pel_t *orig_line;  pel_t **ref_pic;        StorablePicture *ref_picture;  int   lambda_factor   = LAMBDA_FACTOR (lambda);  int   mv_shift        = 0;  int   check_position0 = (blocktype==1 && *mv_x==0 && *mv_y==0 && input->hadamard && !input->rdopt && img->type!=B_SLICE && ref==0);  int   blocksize_x     = input->blc_size[blocktype][0];  int   blocksize_y     = input->blc_size[blocktype][1];  int   pic4_pix_x      = (pic_pix_x << 2);//换算成以1/4像素为单位的坐标  int   pic4_pix_y      = (pic_pix_y << 2);  int   min_pos2        = (input->hadamard ? 0 : 1);  int   max_pos2        = (input->hadamard ? max(1,search_pos2) : search_pos2);  int   list_offset     = ((img->MbaffFrameFlag)&&(img->mb_data[img->current_mb_nr].mb_field))? img->current_mb_nr%2 ? 4 : 2 : 0;  int  apply_weights = ( (active_pps->weighted_pred_flag && (img->type == P_SLICE || img->type == SP_SLICE)) ||                         (active_pps->weighted_bipred_idc && (img->type == B_SLICE)));  //是否使用权重计算代价  int   img_width, img_height;    ref_picture     = listX[list+list_offset][ref];  if (apply_weights)  {    ref_pic = listX[list+list_offset][ref]->imgY_ups_w;  }  else    ref_pic = listX[list+list_offset][ref]->imgY_ups; //做过1/4像素插值的图像放在imgY_ups  img_width  = ref_picture->size_x;  img_height = ref_picture->size_y;//未做插值的图像的宽高  max_pos_x4      = ((ref_picture->size_x - blocksize_x+1)<<2);//最大1/4像素搜索位置  max_pos_y4      = ((ref_picture->size_y - blocksize_y+1)<<2);    /*********************************   *****                       *****   *****  HALF-PEL REFINEMENT  *****   *****                       *****   *********************************/  //===== convert search center to quarter-pel units ===== 先变成1/4像素的运动向量  *mv_x <<= 2;  *mv_y <<= 2;  //===== set function for getting pixel values =====  if ((pic4_pix_x + *mv_x > 1) && (pic4_pix_x + *mv_x < max_pos_x4 - 2) &&      (pic4_pix_y + *mv_y > 1) && (pic4_pix_y + *mv_y < max_pos_y4 - 2)   )//判断半像素是否出界  {    PelY_14 = FastPelY_14;//没出界  }  else  {    PelY_14 = UMVPelY_14;  }  //===== loop over search positions =====  for (best_pos = 0, pos = min_pos2; pos < max_pos2; pos++)    //半像素搜索,只搜索最近的9个点(max_pos2==9)  {    cand_mv_x = *mv_x + (spiral_search_x[pos] << 1);    // quarter-pel units    cand_mv_y = *mv_y + (spiral_search_y[pos] << 1);    // quarter-pel units    //----- set motion vector cost -----    mcost = MV_COST (lambda_factor, mv_shift, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);    if (check_position0 && pos==0)  //中央像素点位置为当前宏块位置    {      mcost -= WEIGHTED_COST (lambda_factor, 16);    }    if (mcost >= min_mcost) continue;    //----- add up SATD -----    for (y0=0, abort_search=0; y0<blocksize_y && !abort_search; y0+=4)    {      ry0 = ((pic_pix_y+y0)<<2) + cand_mv_y;//搜索中心      for (x0=0; x0<blocksize_x; x0+=4)//4*4块计算SATD      {        rx0 = ((pic_pix_x+x0)<<2) + cand_mv_x;        d   = diff;//共享内存空间//找到1/4像素的搜索中心,根据插值后的像素值与整数像素值同位置出相减        orig_line = orig_pic [y0  ];    ry=ry0;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+1];    ry=ry0+4;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+2];    ry=ry0+8;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+3];    ry=ry0+12;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d        = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        if ((mcost += SATD (diff, input->hadamard)) > min_mcost)        {          abort_search = 1;          break;        }//比最小代价大,终止搜索      }    }    if (mcost < min_mcost)    {      min_mcost = mcost;      best_pos  = pos;    }  }  if (best_pos)  {    *mv_x += (spiral_search_x [best_pos] << 1);    *mv_y += (spiral_search_y [best_pos] << 1);  }  /************************************   *****                          *****   *****  QUARTER-PEL REFINEMENT  *****   *****                          *****   ************************************/  //===== set function for getting pixel values =====  if ((pic4_pix_x + *mv_x > 1) && (pic4_pix_x + *mv_x < max_pos_x4 - 1) &&      (pic4_pix_y + *mv_y > 1) && (pic4_pix_y + *mv_y < max_pos_y4 - 1)   )  {    PelY_14 = FastPelY_14;  }  else  {    PelY_14 = UMVPelY_14;  }  //===== loop over search positions =====  for (best_pos = 0, pos = 1; pos < search_pos4; pos++)//1/4像素搜索,只搜索最近的9个点(max_pos2==9)  {    cand_mv_x = *mv_x + spiral_search_x[pos];    // quarter-pel units    cand_mv_y = *mv_y + spiral_search_y[pos];    // quarter-pel units    //----- set motion vector cost -----    mcost = MV_COST (lambda_factor, mv_shift, cand_mv_x, cand_mv_y, pred_mv_x, pred_mv_y);    if (mcost >= min_mcost) continue;    //----- add up SATD -----    for (y0=0, abort_search=0; y0<blocksize_y && !abort_search; y0+=4)    {      ry0 = ((pic_pix_y+y0)<<2) + cand_mv_y;      for (x0=0; x0<blocksize_x; x0+=4)      {        rx0 = ((pic_pix_x+x0)<<2) + cand_mv_x;        d   = diff;        orig_line = orig_pic [y0  ];    ry=ry0;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+1];    ry=ry0+4;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+2];    ry=ry0+8;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d++      = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        orig_line = orig_pic [y0+3];    ry=ry0+12;        *d++      = orig_line[x0  ]  -  PelY_14 (ref_pic, ry, rx0   , img_height, img_width);        *d++      = orig_line[x0+1]  -  PelY_14 (ref_pic, ry, rx0+ 4, img_height, img_width);        *d++      = orig_line[x0+2]  -  PelY_14 (ref_pic, ry, rx0+ 8, img_height, img_width);        *d        = orig_line[x0+3]  -  PelY_14 (ref_pic, ry, rx0+12, img_height, img_width);        if ((mcost += SATD (diff, input->hadamard)) > min_mcost)        {          abort_search = 1;          break;        }      }    }    if (mcost < min_mcost)    {      min_mcost = mcost;      best_pos  = pos;    }  }  if (best_pos)  {    *mv_x += spiral_search_x [best_pos];    *mv_y += spiral_search_y [best_pos];  }  //===== return minimum motion cost =====  return min_mcost;}
View Code

 

 1/4像素插值处理

  在做插值之前,需要先对原图像添加边框(Pad),即在原图上下左右四个方向分别添加边界像素点,像素点的取值为边界像素点的值,可以参考Edge Process

  在JM8.6时,HPad与VPad都是4,而在JM18.6,HPad为32,VPad为20

 

  插值过程可以分为6个步骤:

  1. 水平1/2像素通过6抽头滤波器插值
  2. 垂直1/2像素通过6抽头滤波器插值
  3. 水平1/4像素内插
  4. 垂直1/4像素内插
  5. 45°内插
  6. 反向45°内插

1/2像素插值

 

 

1/4像素水平、垂直插值                1/4像素正反45°插值

 

 

以上步骤是以JM8.6为蓝本,JM18.6有自己的方式,具体可以参考下面的code

JM8.6

/*! ************************************************************************ * \brief *    Upsample 4 times, store them in out4x.  Color is simply copied * * \par Input: *    srcy, srcu, srcv, out4y, out4u, out4v * * \par Side Effects_ *    Uses (writes) img4Y_tmp.  This should be moved to a static variable *    in this module ************************************************************************/void UnifiedOneForthPix (StorablePicture *s){  int is;  int i, j, j4;  int ie2, je2, jj, maxy;    byte **out4Y;  byte  *ref11;  byte  **imgY = s->imgY;  int img_width =s->size_x;  int img_height=s->size_y;    // don‘t upsample twice  if (s->imgY_ups || s->imgY_11)    return;  s->imgY_11 = malloc ((s->size_x * s->size_y) * sizeof (byte));  if (NULL == s->imgY_11)    no_mem_exit("alloc_storable_picture: s->imgY_11");    get_mem2D (&(s->imgY_ups), (2*IMG_PAD_SIZE + s->size_y)*4, (2*IMG_PAD_SIZE + s->size_x)*4);  if (input->WeightedPrediction || input->WeightedBiprediction)  {      s->imgY_11_w = malloc ((s->size_x * s->size_y) * sizeof (byte));      get_mem2D (&(s->imgY_ups_w), (2*IMG_PAD_SIZE + s->size_y)*4, (2*IMG_PAD_SIZE + s->size_x)*4);  }  out4Y = s->imgY_ups;  ref11 = s->imgY_11;  //chj 水平半像素内插  for (j = -IMG_PAD_SIZE; j < s->size_y + IMG_PAD_SIZE; j++)  {    for (i = -IMG_PAD_SIZE; i < s->size_x + IMG_PAD_SIZE; i++)    {      jj = max (0, min (s->size_y - 1, j));      is =              (ONE_FOURTH_TAP[0][0] *               (imgY[jj][max (0, min (s->size_x - 1, i))] +                imgY[jj][max (0, min (s->size_x - 1, i + 1))]) +               ONE_FOURTH_TAP[1][0] *               (imgY[jj][max (0, min (s->size_x - 1, i - 1))] +                imgY[jj][max (0, min (s->size_x - 1, i + 2))]) +               ONE_FOURTH_TAP[2][0] *               (imgY[jj][max (0, min (s->size_x - 1, i - 2))] +                imgY[jj][max (0, min (s->size_x - 1, i + 3))]));            img4Y_tmp[j + IMG_PAD_SIZE][(i + IMG_PAD_SIZE) * 2] = imgY[jj][max (0, min (s->size_x - 1, i))] * 1024;    // 1/1 pix pos            img4Y_tmp[j + IMG_PAD_SIZE][(i + IMG_PAD_SIZE) * 2 + 1] = is * 32;  // 1/2 pix pos    }  }  //chj 垂直半像素内插  for (i = 0; i < (s->size_x + 2 * IMG_PAD_SIZE) * 2; i++)  {    for (j = 0; j < s->size_y + 2 * IMG_PAD_SIZE; j++)    {      j4 = j * 4;      maxy = s->size_y + 2 * IMG_PAD_SIZE - 1;      // change for TML4, use 6 TAP vertical filter      /*1/2像素用6抽头滤波器,系数为ONE_FOURTH_TAP (20 -5 1 1 -5 20) */      is =              (ONE_FOURTH_TAP[0][0] *               (img4Y_tmp[j][i] + img4Y_tmp[min (maxy, j + 1)][i]) +               ONE_FOURTH_TAP[1][0] * (img4Y_tmp[max (0, j - 1)][i] +                                       img4Y_tmp[min (maxy, j + 2)][i]) +               ONE_FOURTH_TAP[2][0] * (img4Y_tmp[max (0, j - 2)][i] +                                       img4Y_tmp[min (maxy, j + 3)][i])) / 32;            PutPel_14 (out4Y, (j - IMG_PAD_SIZE) * 4, (i - IMG_PAD_SIZE * 2) * 2, (pel_t) max (0, min (255, (int) ((img4Y_tmp[j][i] + 512) / 1024))));  // 1/2 pix      PutPel_14 (out4Y, (j - IMG_PAD_SIZE) * 4 + 2, (i - IMG_PAD_SIZE * 2) * 2, (pel_t) max (0, min (255, (int) ((is + 512) / 1024))));   // 1/2 pix    }  }    /* 1/4 pix */  /*1/4像素直接用平均值*/  /* luma */  ie2 = (s->size_x + 2 * IMG_PAD_SIZE - 1) * 4;  je2 = (s->size_y + 2 * IMG_PAD_SIZE - 1) * 4;    for (j = 0; j < je2 + 4; j += 2)    for (i = 0; i < ie2 + 3; i += 2)    {      /*  ‘-‘ 水平内插 */          PutPel_14 (out4Y, j - IMG_PAD_SIZE * 4, i - IMG_PAD_SIZE * 4 + 1,                     (pel_t) (max (0, min (255,(int) (FastPelY_14 (out4Y, j - IMG_PAD_SIZE * 4,                      i - IMG_PAD_SIZE * 4, img_height, img_width) + FastPelY_14 (out4Y,                      j - IMG_PAD_SIZE * 4, min (ie2 + 2, i + 2) - IMG_PAD_SIZE * 4, img_height, img_width)+1) / 2))));    }    for (i = 0; i < ie2 + 4; i++)    {      for (j = 0; j < je2 + 3; j += 2)      {        if (i % 2 == 0)        {          /*  ‘|‘  垂直内插*/          PutPel_14 (out4Y, j - IMG_PAD_SIZE * 4 + 1, i - IMG_PAD_SIZE * 4,                    (pel_t) (max (0, min (255, (int) (FastPelY_14 (out4Y, j - IMG_PAD_SIZE * 4,                     i - IMG_PAD_SIZE * 4, img_height, img_width) + FastPelY_14 (out4Y,                     min (je2 + 2, j + 2) - IMG_PAD_SIZE * 4, i - IMG_PAD_SIZE * 4, img_height, img_width)+1) / 2))));        }        else if ((j % 4 == 0 && i % 4 == 1) || (j % 4 == 2 && i % 4 == 3))        {                /*  ‘/‘ 45度内插  */                PutPel_14 (out4Y, j - IMG_PAD_SIZE * 4 + 1, i - IMG_PAD_SIZE * 4,                           (pel_t) (max (0, min (255, (int) (FastPelY_14 (out4Y, j - IMG_PAD_SIZE * 4,                            min (ie2 + 2, i + 1) - IMG_PAD_SIZE * 4, img_height, img_width) + FastPelY_14 (out4Y,                            min (je2 + 2, j + 2) - IMG_PAD_SIZE * 4, i - IMG_PAD_SIZE * 4 - 1, img_height, img_width) + 1) / 2))));        }        else        {                /*  ‘\‘  反向45度内插 */                PutPel_14 (out4Y, j - IMG_PAD_SIZE * 4 + 1, i - IMG_PAD_SIZE * 4,                           (pel_t) (max (0, min (255, (int) (FastPelY_14 (out4Y, j - IMG_PAD_SIZE * 4,                           i - IMG_PAD_SIZE * 4 - 1, img_height, img_width) + FastPelY_14 (out4Y,                           min (je2 + 2, j + 2) - IMG_PAD_SIZE * 4,                            min (ie2 + 2, i + 1) - IMG_PAD_SIZE * 4, img_height, img_width) + 1) / 2))));              }          }      }    /*  Chroma: 色度只是复制整数点,无内插   *//*    for (j = 0; j < img->height_cr; j++)      {        memcpy (outU[j], imgU[j], img->width_cr);       // just copy 1/1 pix, interpolate "online"         memcpy (outV[j], imgV[j], img->width_cr);      }*/    // Generate 1/1th pel representation (used for integer pel MV search)    /* ref11存放的是整像素resolution的图像       out4Y存放的是1/4像素resolution的图像       要把整像素值从out4Y复制到ref11对应的位置    */    GenerateFullPelRepresentation (out4Y, ref11, s->size_x, s->size_y);}
View Code

 

JM18.6

/*! ************************************************************************ * \brief *    Creates the 4x4 = 16 images that contain quarter-pel samples *    sub-sampled at different spatial orientations; *    enables more efficient implementation * * \param p_Vid *    pointer to VideoParameters structure * \param s *    pointer to StorablePicture structure s************************************************************************ */void getSubImagesLuma( VideoParameters *p_Vid, StorablePicture *s ){  imgpel ****cImgSub   = s->p_curr_img_sub;  int        otf_shift = ( p_Vid->p_Inp->OnTheFlyFractMCP == OTF_L1 ) ? (1) : (0) ;  //  0  1  2  3  //  4  5  6  7  //  8  9 10 11  // 12 13 14 15  //由于p_curr_img_sub是4维的 4x4xYxX,  //而上方的矩阵cImgSub就是头两维的4x4矩阵  //所以cImgSub[][]中的地址所指向的都是一整副图像(X x Y)  //// INTEGER PEL POSITIONS ////  // sub-image 0 [0][0]  // simply copy the integer pels  if (cImgSub[0][0][0] != s->p_curr_img[0])  {    getSubImageInteger( s, cImgSub[0][0], s->p_curr_img);  }  else  {    getSubImageInteger_s( s, cImgSub[0][0], s->p_curr_img);  }  //// HALF-PEL POSITIONS: SIX-TAP FILTER ////  // sub-image 2 [0][2]  // HOR interpolate (six-tap) sub-image [0][0]  getHorSubImageSixTap( p_Vid, s, cImgSub[0][2>>otf_shift], cImgSub[0][0] );  // sub-image 8 [2][0]  // VER interpolate (six-tap) sub-image [0][0]  getVerSubImageSixTap( p_Vid, s, cImgSub[2>>otf_shift][0], cImgSub[0][0]);  // sub-image 10 [2][2]  // VER interpolate (six-tap) sub-image [0][2]  getVerSubImageSixTapTmp( p_Vid, s, cImgSub[2>>otf_shift][2>>otf_shift]);  if( !p_Vid->p_Inp->OnTheFlyFractMCP )  {    //// QUARTER-PEL POSITIONS: BI-LINEAR INTERPOLATION ////    // sub-image 1 [0][1]    getSubImageBiLinear    ( s, cImgSub[0][1], cImgSub[0][0], cImgSub[0][2]);    // sub-image 4 [1][0]    getSubImageBiLinear    ( s, cImgSub[1][0], cImgSub[0][0], cImgSub[2][0]);    // sub-image 5 [1][1]    getSubImageBiLinear    ( s, cImgSub[1][1], cImgSub[0][2], cImgSub[2][0]);    // sub-image 6 [1][2]    getSubImageBiLinear    ( s, cImgSub[1][2], cImgSub[0][2], cImgSub[2][2]);    // sub-image 9 [2][1]    getSubImageBiLinear    ( s, cImgSub[2][1], cImgSub[2][0], cImgSub[2][2]);    // sub-image 3  [0][3]    getHorSubImageBiLinear ( s, cImgSub[0][3], cImgSub[0][2], cImgSub[0][0]);    // sub-image 7  [1][3]    getHorSubImageBiLinear ( s, cImgSub[1][3], cImgSub[0][2], cImgSub[2][0]);    // sub-image 11 [2][3]    getHorSubImageBiLinear ( s, cImgSub[2][3], cImgSub[2][2], cImgSub[2][0]);    // sub-image 12 [3][0]    getVerSubImageBiLinear ( s, cImgSub[3][0], cImgSub[2][0], cImgSub[0][0]);    // sub-image 13 [3][1]    getVerSubImageBiLinear ( s, cImgSub[3][1], cImgSub[2][0], cImgSub[0][2]);    // sub-image 14 [3][2]    getVerSubImageBiLinear ( s, cImgSub[3][2], cImgSub[2][2], cImgSub[0][2]);    // sub-image 15 [3][3]    getDiagSubImageBiLinear( s, cImgSub[3][3], cImgSub[0][2], cImgSub[2][0]);  }}
View Code