首页 > 代码库 > hdu 4869 Turn the pokers (2014多校联合第一场 I)

hdu 4869 Turn the pokers (2014多校联合第一场 I)

Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1265    Accepted Submission(s): 465


Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?

http://acm.hdu.edu.cn/showproblem.php?pid=4869


思路:可惜了,比赛中没有想出来,一比赛出来就想到了。

首先考虑两次翻转,翻转a个和b个,不妨设a>b,现在考虑翻转后正面朝上的个数(假设一开始都是背面朝上,下面用0表示背面朝上,1表示正面朝上)。翻转后,1的个数最大可能为a+b,最小为a-b。进一步观察可发现经过两次翻转,1的个数可取的值为最小值为a-b,最大值为a+b,且间隔为2的一个区间,也就是a-b,a-b+2,a-b+4......a+b-2,a+b。那么现在如果再加一个数C,同理可得到1的个数会是一个区间,那么我们只要维护这个区间即可。注意会有这样的情况,比如a+b超过n或a-b小于0,这个时候就要讨论算出新的区间,这个仔细分情况讨论就行。最后算出1的个数的区间[L,R]后,最后的答案就为C(n,L)+C(n,L+2)+C(n,L+4)+......C(n,R),最后要取模1e9+7。(C(n,m)为n个数中取m个的组合数)因为这里的n比较大,所以不能直接按公式C[n][m]=C[n-1][m]+C[n-1][m-1]来做,因为C(n,m)=n!/(m!*(n-m)!),那么预处理出n!和n!关于1e9+7的逆元,再根据公式即可得到答案。


#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#define ll long long
#define maxn 100010
#define mod 1000000009
using namespace std;
ll pow(ll x,ll y)
{
    if(y==0)
    return 1;
    ll tmp=pow(x,y/2);
    tmp=(tmp*tmp)%mod;
    if(y&1)
    tmp=tmp*x%mod;
    return tmp;
}
ll c[maxn],b[maxn];
void init()
{
    c[0]=1;
    for(int i=1;i<=100000;i++)
    c[i]=(c[i-1]*i)%mod;
    for(int i=0;i<=100000;i++)
    b[i]=pow(c[i],mod-2);
}
ll getC(int n,int m)
{
    if(m==0||m==n)
    return 1;
    ll tmp=c[n]*b[m]%mod*b[n-m]%mod;
    return tmp;
}
int main()
{
    freopen("dd.txt","r",stdin);
    init();
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        int x;
        int l=0,r=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            int rr=r;
            if(r+x<=m)
            r+=x;
            else
            {
                if(l+x<=m)
                {
                    if((m-l-x)%2)
                    r=m-1;
                    else
                    r=m;
                }
                else
                {
                    r=m-(l+x-m);
                }
            }
            if(l-x>=0)
            l-=x;
            else
            {
                if(rr>=x)
                {
                    if((rr-x)%2)
                    l=1;
                    else
                    l=0;
                }
                else
                l=x-rr;
            }
        }
        ll ans=0;
        for(int i=l;i<=r;i+=2)
        {
            ans=(ans+getC(m,i))%mod;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}