首页 > 代码库 > Windows安装mxnet

Windows安装mxnet

<style>code { white-space: pre }</style> <style>div.sourceCode { } table.sourceCode,tr.sourceCode,td.lineNumbers,td.sourceCode { margin: 0; padding: 0; vertical-align: baseline; border: none } table.sourceCode { width: 100%; line-height: 100% } td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa } td.sourceCode { padding-left: 5px } code>span.kw { color: #007020; font-weight: bold } code>span.dt { color: #902000 } code>span.dv { color: #40a070 } code>span.bn { color: #40a070 } code>span.fl { color: #40a070 } code>span.ch { color: #4070a0 } code>span.st { color: #4070a0 } code>span.co { color: #60a0b0; font-style: italic } code>span.ot { color: #007020 } code>span.al { color: #ff0000; font-weight: bold } code>span.fu { color: #06287e } code>span.er { color: #ff0000; font-weight: bold } code>span.wa { color: #60a0b0; font-weight: bold; font-style: italic } code>span.cn { color: #880000 } code>span.sc { color: #4070a0 } code>span.vs { color: #4070a0 } code>span.ss { color: #bb6688 } code>span.im { } code>span.va { color: #19177c } code>span.cf { color: #007020; font-weight: bold } code>span.op { color: #666666 } code>span.bu { } code>span.ex { } code>span.pp { color: #bc7a00 } code>span.at { color: #7d9029 } code>span.do { color: #ba2121; font-style: italic } code>span.an { color: #60a0b0; font-weight: bold; font-style: italic } code>span.cv { color: #60a0b0; font-weight: bold; font-style: italic } code>span.in { color: #60a0b0; font-weight: bold; font-style: italic }</style>

安装MXNET

由于公司需要,近期需要快速精通mxnet,接下来的几个星期会陆续更新关于mxnet的笔记,提供参考和备忘。第一篇介绍mxnet的安装,mxnet的安装过程十分蛋疼,个人也是摸索了许久才安装成功,期间也是遇到了各种奇奇怪怪的坑,为了避免新人少走弯路,遂将经验总结于此。

windows上的安装

本人机器配置为Win10 + Cuda 7.5, 后续的安装以此为准。 1.mxnet需要VS2013支持C++ 11特性 在Visual C++ Compiler Nov 2013 CTP下载C++ 11版本的编译器,接着将C:\Program Files (x86)\Microsoft Visual C++ Compiler Nov 2013 CTP下所有同名目录中的文件覆盖到C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC下所有同名目录下对应的文件(覆盖前记得备份) 技术分享 2.从github克隆源码 git clone --recursive https://github.com/dmlc/mxnet 这里提醒注意一定不要忘记--recursive参数,因为mxnet依赖于DMLC通用工具包,--recursive参数可以自动加载mshadow等依赖。 3.用Cmake生成项目工程文件,并编译项目 打开cmake,Where is the source code栏里打开刚才下好的mxnet源代码目录,Where to build the binaries栏里指定生成工程文件和编译结果的路径,这里我填的是C:/mxnet/build,如图所示: 技术分享 接着点击configure,生成配置。

技术分享

然后我们点击generate,生成.sln项目文件 技术分享 找到生成的工程文件mxnet.sln,用vs2013打开

技术分享

最后,我们在项目mxnet上点击右键->生成,开始编译。

技术分享

经过漫长的等待后,mxnet终于编译完成。

技术分享

编译完成后,在C:\mxnet\build\Release目录下会生成三个文件:libmxnet.dll,libmxnet.exp,libmxnet.lib。 4.安装mxnet的python接口 接下来我们到mxnet的源代码目录:G:\OpenSource\mxnet\python,运行

python setup.py install

来安装mxnet的python包。

技术分享

我们将libmxnet.dll 接着,导入mxnet的时候发生了如下的错误:

技术分享

通过调试发现问题出在打开libmxnet.dll的时候,问题应该出在没有导入依赖的dll文件,但蛋疼的是我也不知道它到底依赖哪一些dll文件。 5.安装依赖 通过一番搜索,我找到一个名为dependency walker的软件,用它打开libmxnet.dll,我们看到还缺少的dll文件有哪些(图中的问号)

技术分享

这些均能dll在mxnet的release tab下找到,下载完成后将其解压到mxnet的pthon安装目录C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet下。将这些文件放入目录后,我们测试一下能不能导入

import ctypes
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cudart64_75.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cublas64_75.dll")
ctypes._dlopen(r"cudnn64_5.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\libopenblas.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_world300.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_core2413.dll")
ctypes._dlopen(r"vcomp120.dll")
ctypes._dlopen(r"kernel32.dll")
import mxnet as mx
print "mxnet version is:%s"%mx.__version__
mxnet version is:0.7.0

上面的代码中,我们需要手动的载入mxnet依赖的动态链接库才能导入,目前还不清楚为什么它不会自动载入,这个问题留待以后解决,目前可以先把上段代码加入到mxnet的初始化代码中。接着我们跑一跑examples/image-classification/train_mnist这个例子

import ctypes
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cudart64_75.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cublas64_75.dll")
ctypes._dlopen(r"cudnn64_5.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\libopenblas.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_world300.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_core2413.dll")
ctypes._dlopen(r"vcomp120.dll")
ctypes._dlopen(r"kernel32.dll")
import mxnet as mx
import argparse
import os, sys
import logging

def _download(data_dir):
    if not os.path.isdir(data_dir):
        os.system("mkdir " + data_dir)
    os.chdir(data_dir)
    if (not os.path.exists(‘train-images-idx3-ubyte‘)) or \
       (not os.path.exists(‘train-labels-idx1-ubyte‘)) or \
       (not os.path.exists(‘t10k-images-idx3-ubyte‘)) or \
       (not os.path.exists(‘t10k-labels-idx1-ubyte‘)):
        os.system("wget http://data.dmlc.ml/mxnet/data/mnist.zip")
        os.system("unzip -u mnist.zip; rm mnist.zip")
    os.chdir("..")

def get_loc(data, attr={‘lr_mult‘:‘0.01‘}):
    """
    the localisation network in lenet-stn, it will increase acc about more than 1%,
    when num-epoch >=15
    """
    loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2))
    loc = mx.symbol.Activation(data = loc, act_type=‘relu‘)
    loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type=‘max‘)
    loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1))
    loc = mx.symbol.Activation(data = loc, act_type=‘relu‘)
    loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type=‘avg‘)
    loc = mx.symbol.Flatten(data=loc)
    loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr)
    return loc

def get_mlp():
    """
    multi-layer perceptron
    """
    data = mx.symbol.Variable(‘data‘)
    fc1  = mx.symbol.FullyConnected(data = data, name=‘fc1‘, num_hidden=128)
    act1 = mx.symbol.Activation(data = fc1, name=‘relu1‘, act_type="relu")
    fc2  = mx.symbol.FullyConnected(data = act1, name = ‘fc2‘, num_hidden = 64)
    act2 = mx.symbol.Activation(data = fc2, name=‘relu2‘, act_type="relu")
    fc3  = mx.symbol.FullyConnected(data = act2, name=‘fc3‘, num_hidden=10)
    mlp  = mx.symbol.SoftmaxOutput(data = fc3, name = ‘softmax‘)
    return mlp

def get_lenet(add_stn=False):
    """
    LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
    Haffner. "Gradient-based learning applied to document recognition."
    Proceedings of the IEEE (1998)
    """
    data = mx.symbol.Variable(‘data‘)
    if(add_stn):
        data = mx.sym.SpatialTransformer(data=data, loc=get_loc(data), target_shape = (28,28),
                                         transform_type="affine", sampler_type="bilinear")
    # first conv
    conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20)
    tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh")
    pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max",
                              kernel=(2,2), stride=(2,2))
    # second conv
    conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50)
    tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh")
    pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max",
                              kernel=(2,2), stride=(2,2))
    # first fullc
    flatten = mx.symbol.Flatten(data=pool2)
    fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
    tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh")
    # second fullc
    fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
    # loss
    lenet = mx.symbol.SoftmaxOutput(data=fc2, name=‘softmax‘)
    return lenet

def get_iterator(data_shape):
    def get_iterator_impl(args, kv):
        data_dir = args.data_dir
        """
        if ‘://‘ not in args.data_dir:
            _download(args.data_dir)
        """
        flat = False if len(data_shape) == 3 else True

        train           = mx.io.MNISTIter(
            image       = data_dir + "train-images-idx3-ubyte",
            label       = data_dir + "train-labels-idx1-ubyte",
            input_shape = data_shape,
            batch_size  = args.batch_size,
            shuffle     = True,
            flat        = flat,
            num_parts   = kv.num_workers,
            part_index  = kv.rank)

        val = mx.io.MNISTIter(
            image       = data_dir + "t10k-images-idx3-ubyte",
            label       = data_dir + "t10k-labels-idx1-ubyte",
            input_shape = data_shape,
            batch_size  = args.batch_size,
            flat        = flat,
            num_parts   = kv.num_workers,
            part_index  = kv.rank)

        return (train, val)
    return get_iterator_impl

def parse_args():
    parser = argparse.ArgumentParser(description=‘train an image classifer on mnist‘)
    parser.add_argument(‘--network‘, type=str, default=‘mlp‘,
                        choices = [‘mlp‘, ‘lenet‘, ‘lenet-stn‘],
                        help = ‘the cnn to use‘)
    parser.add_argument(‘--data-dir‘, type=str, default=‘mnist/‘,
                        help=‘the input data directory‘)
    parser.add_argument(‘--gpus‘, type=str,
                        help=‘the gpus will be used, e.g "0,1,2,3"‘)
    parser.add_argument(‘--num-examples‘, type=int, default=60000,
                        help=‘the number of training examples‘)
    parser.add_argument(‘--batch-size‘, type=int, default=128,
                        help=‘the batch size‘)
    parser.add_argument(‘--lr‘, type=float, default=.1,
                        help=‘the initial learning rate‘)
    parser.add_argument(‘--model-prefix‘, type=str,
                        help=‘the prefix of the model to load/save‘)
    parser.add_argument(‘--save-model-prefix‘, type=str,
                        help=‘the prefix of the model to save‘)
    parser.add_argument(‘--num-epochs‘, type=int, default=10,
                        help=‘the number of training epochs‘)
    parser.add_argument(‘--load-epoch‘, type=int,
                        help="load the model on an epoch using the model-prefix")
    parser.add_argument(‘--kv-store‘, type=str, default=‘local‘,
                        help=‘the kvstore type‘)
    parser.add_argument(‘--lr-factor‘, type=float, default=1,
                        help=‘times the lr with a factor for every lr-factor-epoch epoch‘)
    parser.add_argument(‘--lr-factor-epoch‘, type=float, default=1,
                        help=‘the number of epoch to factor the lr, could be .5‘)
    return parser.parse_args([‘--gpus‘, ‘0‘, ‘--data-dir‘, ‘G:/OpenSource/mxnet/example/image-classification/mnist/‘])

if __name__ == ‘__main__‘:
    args = parse_args()

    if args.network == ‘mlp‘:
        data_shape = (784, )
        net = get_mlp()
    elif args.network == ‘lenet-stn‘:
        data_shape = (1, 28, 28)
        net = get_lenet(True)
    else:
        data_shape = (1, 28, 28)
        net = get_lenet()

    # kvstore
    kv = mx.kvstore.create(args.kv_store)

    # logging
    head = %(asctime)-15s Node[‘ + str(kv.rank) + ‘] %(message)s
    
    logger = logging.getLogger()
    formatter = logging.Formatter(head)
    stdout_handler = logging.StreamHandler(sys.stdout)
    stdout_handler.setFormatter(formatter)

    logger.addHandler(stdout_handler)

    logger.setLevel(logging.INFO)
    logger.info(‘start with arguments %s, args)
    
    # load model
    model_prefix = args.model_prefix
    if model_prefix is not None:
        model_prefix += "-%d" % (kv.rank)
    model_args = {}
    if args.load_epoch is not None:
        assert model_prefix is not None
        tmp = mx.model.FeedForward.load(model_prefix, args.load_epoch)
        model_args = {‘arg_params‘ : tmp.arg_params,
                      ‘aux_params‘ : tmp.aux_params,
                      ‘begin_epoch‘ : args.load_epoch}
    # save model
    save_model_prefix = args.save_model_prefix
    if save_model_prefix is None:
        save_model_prefix = model_prefix
    checkpoint = None if save_model_prefix is None else mx.callback.do_checkpoint(save_model_prefix)

    # data
    (train, val) = get_iterator(data_shape)(args, kv)

    # train
    devs = mx.cpu() if args.gpus is None else [
        mx.gpu(int(i)) for i in args.gpus.split(‘,‘)]

    epoch_size = args.num_examples / args.batch_size

    if args.kv_store == ‘dist_sync‘:
        epoch_size /= kv.num_workers
        model_args[‘epoch_size‘] = epoch_size

    if ‘lr_factor‘ in args and args.lr_factor < 1:
        model_args[‘lr_scheduler‘] = mx.lr_scheduler.FactorScheduler(
            step = max(int(epoch_size * args.lr_factor_epoch), 1),
            factor = args.lr_factor)

    if ‘clip_gradient‘ in args and args.clip_gradient is not None:
        model_args[‘clip_gradient‘] = args.clip_gradient

    # disable kvstore for single device
    if ‘local‘ in kv.type and (
            args.gpus is None or len(args.gpus.split(‘,‘)) is 1):
        kv = None

    model = mx.model.FeedForward(
        ctx                = devs,
        symbol             = net,
        num_epoch          = args.num_epochs,
        learning_rate      = args.lr,
        momentum           = 0.9,
        wd                 = 0.00001,
        initializer        = mx.init.Xavier(factor_type="in", magnitude=2.34),
        **model_args)

    eval_metrics = [‘accuracy‘]
    ## TopKAccuracy only allows top_k > 1
    for top_k in [5, 10, 20]:
        eval_metrics.append(mx.metric.create(‘top_k_accuracy‘, top_k = top_k))

    model.fit(
        X                  = train,
        eval_data          = val,
        eval_metric        = eval_metrics,
        kvstore            = kv,
        batch_end_callback = [mx.callback.Speedometer(args.batch_size, 50)],
        epoch_end_callback = checkpoint)
INFO:root:start with arguments Namespace(batch_size=128, data_dir=‘G:/OpenSource/mxnet/example/image-classification/mnist/‘, gpus=‘0‘, kv_store=‘local‘, load_epoch=None, lr=0.1, lr_factor=1, lr_factor_epoch=1, model_prefix=None, network=‘mlp‘, num_epochs=10, num_examples=60000, save_model_prefix=None)


2016-10-26 19:37:38,994 Node[0] start with arguments Namespace(batch_size=128, data_dir=‘G:/OpenSource/mxnet/example/image-classification/mnist/‘, gpus=‘0‘, kv_store=‘local‘, load_epoch=None, lr=0.1, lr_factor=1, lr_factor_epoch=1, model_prefix=None, network=‘mlp‘, num_epochs=10, num_examples=60000, save_model_prefix=None)


INFO:root:Start training with [gpu(0)]


2016-10-26 19:37:42,038 Node[0] Start training with [gpu(0)]


INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-accuracy=0.687344


2016-10-26 19:37:45,351 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-accuracy=0.687344


INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_5=0.935937


2016-10-26 19:37:45,354 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_5=0.935937


INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:45,357 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:45,361 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-accuracy=0.897188


2016-10-26 19:37:45,648 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-accuracy=0.897188


INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_5=0.992812


2016-10-26 19:37:45,650 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_5=0.992812


INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:45,651 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:45,654 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-accuracy=0.919687


2016-10-26 19:37:45,930 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-accuracy=0.919687


INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.995469


2016-10-26 19:37:45,930 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.995469


INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:45,933 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:45,934 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-accuracy=0.927656


2016-10-26 19:37:46,200 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-accuracy=0.927656


INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_5=0.997031


2016-10-26 19:37:46,203 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_5=0.997031


INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:46,206 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:46,210 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-accuracy=0.942031


2016-10-26 19:37:46,502 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-accuracy=0.942031


INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_5=0.996875


2016-10-26 19:37:46,503 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_5=0.996875


INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:46,509 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:46,513 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-accuracy=0.940781


2016-10-26 19:37:46,766 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-accuracy=0.940781


INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.997656


2016-10-26 19:37:46,767 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.997656


INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:46,769 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:46,770 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-accuracy=0.943750


2016-10-26 19:37:47,025 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-accuracy=0.943750


INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_5=0.998594


2016-10-26 19:37:47,026 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_5=0.998594


INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:47,028 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:47,029 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-accuracy=0.952344


2016-10-26 19:37:47,296 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-accuracy=0.952344


INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_5=0.998594


2016-10-26 19:37:47,298 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_5=0.998594


INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:47,299 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:47,302 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-accuracy=0.952969


2016-10-26 19:37:47,539 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-accuracy=0.952969


INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_5=0.998906


2016-10-26 19:37:47,542 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_5=0.998906


INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:47,546 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:47,548 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[0] Resetting Data Iterator


2016-10-26 19:37:47,634 Node[0] Epoch[0] Resetting Data Iterator


INFO:root:Epoch[0] Time cost=3.100


2016-10-26 19:37:47,637 Node[0] Epoch[0] Time cost=3.100


INFO:root:Epoch[0] Validation-accuracy=0.960036


2016-10-26 19:37:47,826 Node[0] Epoch[0] Validation-accuracy=0.960036


INFO:root:Epoch[0] Validation-top_k_accuracy_5=0.998698


2016-10-26 19:37:47,828 Node[0] Epoch[0] Validation-top_k_accuracy_5=0.998698


INFO:root:Epoch[0] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:37:47,829 Node[0] Epoch[0] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[0] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:37:47,832 Node[0] Epoch[0] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-accuracy=0.955156


2016-10-26 19:37:48,085 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-accuracy=0.955156


INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_5=0.998594


2016-10-26 19:37:48,088 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_5=0.998594


INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:48,091 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:48,095 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-accuracy=0.957969


2016-10-26 19:37:48,334 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-accuracy=0.957969


INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_5=0.998281


2016-10-26 19:37:48,335 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_5=0.998281


INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:48,336 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:48,338 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-accuracy=0.962969


2016-10-26 19:37:48,612 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-accuracy=0.962969


INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.999062


2016-10-26 19:37:48,615 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.999062


INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:48,618 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:48,619 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-accuracy=0.964688


2016-10-26 19:37:48,864 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-accuracy=0.964688


INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:48,865 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:48,867 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:48,868 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-accuracy=0.967656


2016-10-26 19:37:49,096 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-accuracy=0.967656


INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.998906


2016-10-26 19:37:49,098 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.998906


INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:49,101 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:49,102 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-accuracy=0.962656


2016-10-26 19:37:49,364 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-accuracy=0.962656


INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:49,365 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:49,368 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:49,369 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-accuracy=0.966719


2016-10-26 19:37:49,608 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-accuracy=0.966719


INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999062


2016-10-26 19:37:49,609 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999062


INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:49,611 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:49,612 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-accuracy=0.970313


2016-10-26 19:37:49,846 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-accuracy=0.970313


INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999219


2016-10-26 19:37:49,848 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999219


INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:49,851 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:49,852 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-accuracy=0.969531


2016-10-26 19:37:50,099 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-accuracy=0.969531


INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:50,101 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:50,105 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:50,109 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[1] Resetting Data Iterator


2016-10-26 19:37:50,196 Node[0] Epoch[1] Resetting Data Iterator


INFO:root:Epoch[1] Time cost=2.364


2016-10-26 19:37:50,197 Node[0] Epoch[1] Time cost=2.364


INFO:root:Epoch[1] Validation-accuracy=0.968349


2016-10-26 19:37:50,381 Node[0] Epoch[1] Validation-accuracy=0.968349


INFO:root:Epoch[1] Validation-top_k_accuracy_5=0.999099


2016-10-26 19:37:50,382 Node[0] Epoch[1] Validation-top_k_accuracy_5=0.999099


INFO:root:Epoch[1] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:37:50,384 Node[0] Epoch[1] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[1] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:37:50,385 Node[0] Epoch[1] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-accuracy=0.971875


2016-10-26 19:37:50,635 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-accuracy=0.971875


INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999219


2016-10-26 19:37:50,638 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999219


INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:50,644 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:50,644 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-accuracy=0.971250


2016-10-26 19:37:50,881 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-accuracy=0.971250


INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:50,882 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:50,884 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:50,887 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-accuracy=0.970625


2016-10-26 19:37:51,127 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-accuracy=0.970625


INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:51,128 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:51,130 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:51,131 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-accuracy=0.974844


2016-10-26 19:37:51,364 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-accuracy=0.974844


INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:51,367 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:51,368 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:51,371 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-accuracy=0.975781


2016-10-26 19:37:51,631 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-accuracy=0.975781


INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:51,631 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:51,634 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:51,635 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-accuracy=0.973125


2016-10-26 19:37:51,887 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-accuracy=0.973125


INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:51,890 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:51,894 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:51,895 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-accuracy=0.975781


2016-10-26 19:37:52,134 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-accuracy=0.975781


INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:52,137 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:52,140 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:52,141 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-accuracy=0.977969


2016-10-26 19:37:52,385 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-accuracy=0.977969


INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_5=0.999219


2016-10-26 19:37:52,387 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_5=0.999219


INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:52,390 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:52,391 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-accuracy=0.977187


2016-10-26 19:37:52,647 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-accuracy=0.977187


INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:52,648 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:52,650 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:52,651 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[2] Resetting Data Iterator


2016-10-26 19:37:52,736 Node[0] Epoch[2] Resetting Data Iterator


INFO:root:Epoch[2] Time cost=2.345


2016-10-26 19:37:52,737 Node[0] Epoch[2] Time cost=2.345


INFO:root:Epoch[2] Validation-accuracy=0.973858


2016-10-26 19:37:52,903 Node[0] Epoch[2] Validation-accuracy=0.973858


INFO:root:Epoch[2] Validation-top_k_accuracy_5=0.999099


2016-10-26 19:37:52,905 Node[0] Epoch[2] Validation-top_k_accuracy_5=0.999099


INFO:root:Epoch[2] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:37:52,907 Node[0] Epoch[2] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[2] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:37:52,910 Node[0] Epoch[2] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-accuracy=0.977969


2016-10-26 19:37:53,147 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-accuracy=0.977969


INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:53,148 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:53,151 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:53,151 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-accuracy=0.978281


2016-10-26 19:37:53,395 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-accuracy=0.978281


INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:53,398 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:53,400 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:53,401 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-accuracy=0.977969


2016-10-26 19:37:53,642 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-accuracy=0.977969


INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:53,644 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:53,647 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:53,648 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-accuracy=0.980781


2016-10-26 19:37:53,894 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-accuracy=0.980781


INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:53,895 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:53,898 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:53,900 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-accuracy=0.979531


2016-10-26 19:37:54,141 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-accuracy=0.979531


INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:54,142 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:54,144 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:54,145 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-accuracy=0.979844


2016-10-26 19:37:54,378 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-accuracy=0.979844


INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:54,380 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:54,381 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:54,384 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-accuracy=0.979375


2016-10-26 19:37:54,618 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-accuracy=0.979375


INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:54,621 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:54,621 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:54,622 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-accuracy=0.982656


2016-10-26 19:37:54,862 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-accuracy=0.982656


INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:54,865 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:54,867 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:54,868 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-accuracy=0.981094


2016-10-26 19:37:55,101 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-accuracy=0.981094


INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:55,104 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:55,105 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:55,107 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[3] Resetting Data Iterator


2016-10-26 19:37:55,191 Node[0] Epoch[3] Resetting Data Iterator


INFO:root:Epoch[3] Time cost=2.283


2016-10-26 19:37:55,194 Node[0] Epoch[3] Time cost=2.283


INFO:root:Epoch[3] Validation-accuracy=0.974359


2016-10-26 19:37:55,359 Node[0] Epoch[3] Validation-accuracy=0.974359


INFO:root:Epoch[3] Validation-top_k_accuracy_5=0.999199


2016-10-26 19:37:55,361 Node[0] Epoch[3] Validation-top_k_accuracy_5=0.999199


INFO:root:Epoch[3] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:37:55,362 Node[0] Epoch[3] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[3] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:37:55,364 Node[0] Epoch[3] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-accuracy=0.980938


2016-10-26 19:37:55,601 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-accuracy=0.980938


INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:55,605 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:55,608 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:55,611 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-accuracy=0.981406


2016-10-26 19:37:55,844 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-accuracy=0.981406


INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:55,845 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:55,846 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:55,848 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-accuracy=0.981875


2016-10-26 19:37:56,085 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-accuracy=0.981875


INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:56,088 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:56,089 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:56,091 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-accuracy=0.987187


2016-10-26 19:37:56,315 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-accuracy=0.987187


INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:56,318 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:56,319 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:56,321 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-accuracy=0.982812


2016-10-26 19:37:56,555 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-accuracy=0.982812


INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:56,558 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:56,559 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:56,559 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-accuracy=0.982969


2016-10-26 19:37:56,779 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-accuracy=0.982969


INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:56,780 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:56,782 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:56,786 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-accuracy=0.981563


2016-10-26 19:37:57,036 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-accuracy=0.981563


INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:57,039 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:57,040 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:57,042 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-accuracy=0.985000


2016-10-26 19:37:57,280 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-accuracy=0.985000


INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:57,282 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:57,285 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:57,286 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-accuracy=0.983281


2016-10-26 19:37:57,530 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-accuracy=0.983281


INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:57,532 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:57,533 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:57,535 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[4] Resetting Data Iterator


2016-10-26 19:37:57,615 Node[0] Epoch[4] Resetting Data Iterator


INFO:root:Epoch[4] Time cost=2.251


2016-10-26 19:37:57,617 Node[0] Epoch[4] Time cost=2.251


INFO:root:Epoch[4] Validation-accuracy=0.972456


2016-10-26 19:37:57,776 Node[0] Epoch[4] Validation-accuracy=0.972456


INFO:root:Epoch[4] Validation-top_k_accuracy_5=0.999299


2016-10-26 19:37:57,776 Node[0] Epoch[4] Validation-top_k_accuracy_5=0.999299


INFO:root:Epoch[4] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:37:57,779 Node[0] Epoch[4] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[4] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:37:57,779 Node[0] Epoch[4] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-accuracy=0.984219


2016-10-26 19:37:58,019 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-accuracy=0.984219


INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:58,022 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:58,023 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:58,025 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-accuracy=0.987344


2016-10-26 19:37:58,253 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-accuracy=0.987344


INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:58,255 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:58,256 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:58,257 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.986094


2016-10-26 19:37:58,487 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.986094


INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999531


2016-10-26 19:37:58,489 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999531


INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:58,490 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:58,492 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-accuracy=0.987031


2016-10-26 19:37:58,714 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-accuracy=0.987031


INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:58,717 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:58,719 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:58,720 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-accuracy=0.984531


2016-10-26 19:37:58,946 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-accuracy=0.984531


INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:58,947 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:58,950 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:58,953 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-accuracy=0.985469


2016-10-26 19:37:59,184 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-accuracy=0.985469


INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:59,187 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:59,187 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:59,188 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-accuracy=0.983125


2016-10-26 19:37:59,415 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-accuracy=0.983125


INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:37:59,417 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:59,418 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:59,421 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-accuracy=0.987500


2016-10-26 19:37:59,648 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-accuracy=0.987500


INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:37:59,650 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:59,651 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:59,653 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-accuracy=0.987031


2016-10-26 19:37:59,880 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-accuracy=0.987031


INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:37:59,881 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:37:59,882 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:37:59,884 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[5] Resetting Data Iterator


2016-10-26 19:37:59,973 Node[0] Epoch[5] Resetting Data Iterator


INFO:root:Epoch[5] Time cost=2.194


2016-10-26 19:37:59,974 Node[0] Epoch[5] Time cost=2.194


INFO:root:Epoch[5] Validation-accuracy=0.974459


2016-10-26 19:38:00,132 Node[0] Epoch[5] Validation-accuracy=0.974459


INFO:root:Epoch[5] Validation-top_k_accuracy_5=0.999199


2016-10-26 19:38:00,134 Node[0] Epoch[5] Validation-top_k_accuracy_5=0.999199


INFO:root:Epoch[5] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:38:00,135 Node[0] Epoch[5] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[5] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:38:00,138 Node[0] Epoch[5] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-accuracy=0.990156


2016-10-26 19:38:00,361 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-accuracy=0.990156


INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:00,364 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:00,365 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:00,367 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-accuracy=0.989219


2016-10-26 19:38:00,605 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-accuracy=0.989219


INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:00,607 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:00,608 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:00,609 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.989219


2016-10-26 19:38:00,839 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.989219


INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:00,842 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:00,842 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:00,845 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-accuracy=0.988281


2016-10-26 19:38:01,084 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-accuracy=0.988281


INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:38:01,088 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:01,088 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:01,089 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-accuracy=0.987969


2016-10-26 19:38:01,322 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-accuracy=0.987969


INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:01,323 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:01,325 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:01,326 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-accuracy=0.987187


2016-10-26 19:38:01,555 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-accuracy=0.987187


INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:01,558 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:01,559 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:01,561 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-accuracy=0.981719


2016-10-26 19:38:01,798 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-accuracy=0.981719


INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:38:01,799 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:01,802 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:01,803 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-accuracy=0.987187


2016-10-26 19:38:02,032 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-accuracy=0.987187


INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:38:02,035 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:02,036 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:02,038 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-accuracy=0.988750


2016-10-26 19:38:02,265 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-accuracy=0.988750


INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:02,266 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:02,269 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:02,270 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[6] Resetting Data Iterator


2016-10-26 19:38:02,349 Node[0] Epoch[6] Resetting Data Iterator


INFO:root:Epoch[6] Time cost=2.214


2016-10-26 19:38:02,354 Node[0] Epoch[6] Time cost=2.214


INFO:root:Epoch[6] Validation-accuracy=0.975160


2016-10-26 19:38:02,510 Node[0] Epoch[6] Validation-accuracy=0.975160


INFO:root:Epoch[6] Validation-top_k_accuracy_5=0.999499


2016-10-26 19:38:02,512 Node[0] Epoch[6] Validation-top_k_accuracy_5=0.999499


INFO:root:Epoch[6] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:38:02,513 Node[0] Epoch[6] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[6] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:38:02,515 Node[0] Epoch[6] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-accuracy=0.989844


2016-10-26 19:38:02,733 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-accuracy=0.989844


INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:38:02,736 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:02,736 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:02,739 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-accuracy=0.990781


2016-10-26 19:38:02,973 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-accuracy=0.990781


INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:02,974 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:02,976 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:02,977 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.988125


2016-10-26 19:38:03,207 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.988125


INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:38:03,210 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:03,210 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:03,211 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-accuracy=0.985625


2016-10-26 19:38:03,441 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-accuracy=0.985625


INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:03,444 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:03,444 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:03,446 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-accuracy=0.989219


2016-10-26 19:38:03,677 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-accuracy=0.989219


INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:03,680 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:03,680 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:03,683 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-accuracy=0.988125


2016-10-26 19:38:03,911 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-accuracy=0.988125


INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:03,914 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:03,915 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:03,917 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-accuracy=0.989531


2016-10-26 19:38:04,144 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-accuracy=0.989531


INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:04,144 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:04,147 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:04,148 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-accuracy=0.987812


2016-10-26 19:38:04,361 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-accuracy=0.987812


INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:38:04,362 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:04,365 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:04,367 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-accuracy=0.990000


2016-10-26 19:38:04,598 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-accuracy=0.990000


INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:04,599 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:04,601 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:04,604 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[7] Resetting Data Iterator


2016-10-26 19:38:04,687 Node[0] Epoch[7] Resetting Data Iterator


INFO:root:Epoch[7] Time cost=2.172


2016-10-26 19:38:04,690 Node[0] Epoch[7] Time cost=2.172


INFO:root:Epoch[7] Validation-accuracy=0.977564


2016-10-26 19:38:04,842 Node[0] Epoch[7] Validation-accuracy=0.977564


INFO:root:Epoch[7] Validation-top_k_accuracy_5=0.999599


2016-10-26 19:38:04,845 Node[0] Epoch[7] Validation-top_k_accuracy_5=0.999599


INFO:root:Epoch[7] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:38:04,845 Node[0] Epoch[7] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[7] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:38:04,848 Node[0] Epoch[7] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-accuracy=0.990469


2016-10-26 19:38:05,069 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-accuracy=0.990469


INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:05,072 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:05,072 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:05,075 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-accuracy=0.988594


2016-10-26 19:38:05,299 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-accuracy=0.988594


INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:05,299 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:05,302 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:05,303 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-accuracy=0.990313


2016-10-26 19:38:05,533 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-accuracy=0.990313


INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:05,536 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:05,538 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:05,539 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-accuracy=0.991250


2016-10-26 19:38:05,759 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-accuracy=0.991250


INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:05,762 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:05,763 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:05,766 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-accuracy=0.987969


2016-10-26 19:38:06,016 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-accuracy=0.987969


INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999844


2016-10-26 19:38:06,017 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999844


INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:06,019 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:06,022 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-accuracy=0.990313


2016-10-26 19:38:06,242 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-accuracy=0.990313


INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:06,243 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:06,244 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:06,246 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-accuracy=0.988750


2016-10-26 19:38:06,467 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-accuracy=0.988750


INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:06,469 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:06,470 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:06,471 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-accuracy=0.991250


2016-10-26 19:38:06,693 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-accuracy=0.991250


INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:06,694 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:06,696 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:06,697 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-accuracy=0.989844


2016-10-26 19:38:06,931 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-accuracy=0.989844


INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:06,934 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:06,934 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:06,937 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[8] Resetting Data Iterator


2016-10-26 19:38:07,016 Node[0] Epoch[8] Resetting Data Iterator


INFO:root:Epoch[8] Time cost=2.169


2016-10-26 19:38:07,017 Node[0] Epoch[8] Time cost=2.169


INFO:root:Epoch[8] Validation-accuracy=0.976863


2016-10-26 19:38:07,174 Node[0] Epoch[8] Validation-accuracy=0.976863


INFO:root:Epoch[8] Validation-top_k_accuracy_5=0.999700


2016-10-26 19:38:07,174 Node[0] Epoch[8] Validation-top_k_accuracy_5=0.999700


INFO:root:Epoch[8] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:38:07,177 Node[0] Epoch[8] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[8] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:38:07,177 Node[0] Epoch[8] Validation-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-accuracy=0.990625


2016-10-26 19:38:07,398 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-accuracy=0.990625


INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:07,400 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:07,403 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:07,404 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-accuracy=0.987969


2016-10-26 19:38:07,641 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-accuracy=0.987969


INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:07,641 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:07,644 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:07,644 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-accuracy=0.990469


2016-10-26 19:38:07,871 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-accuracy=0.990469


INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:07,874 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:07,875 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:07,877 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-accuracy=0.992969


2016-10-26 19:38:08,105 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-accuracy=0.992969


INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:08,108 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:08,111 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:08,111 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-accuracy=0.992344


2016-10-26 19:38:08,345 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-accuracy=0.992344


INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:08,348 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:08,349 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:08,351 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-accuracy=0.989062


2016-10-26 19:38:08,581 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-accuracy=0.989062


INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:08,582 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:08,584 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:08,585 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-accuracy=0.989531


2016-10-26 19:38:08,809 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-accuracy=0.989531


INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:08,812 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:08,813 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:08,815 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-accuracy=0.989375


2016-10-26 19:38:09,040 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-accuracy=0.989375


INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_5=0.999687


2016-10-26 19:38:09,042 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_5=0.999687


INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:09,043 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:09,046 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-accuracy=0.991406


2016-10-26 19:38:09,269 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-accuracy=0.991406


INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_5=1.000000


2016-10-26 19:38:09,270 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_5=1.000000


INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_10=1.000000


2016-10-26 19:38:09,272 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_20=1.000000


2016-10-26 19:38:09,273 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_20=1.000000


INFO:root:Epoch[9] Resetting Data Iterator


2016-10-26 19:38:09,355 Node[0] Epoch[9] Resetting Data Iterator


INFO:root:Epoch[9] Time cost=2.179


2016-10-26 19:38:09,358 Node[0] Epoch[9] Time cost=2.179


INFO:root:Epoch[9] Validation-accuracy=0.973958


2016-10-26 19:38:09,522 Node[0] Epoch[9] Validation-accuracy=0.973958


INFO:root:Epoch[9] Validation-top_k_accuracy_5=0.999299


2016-10-26 19:38:09,523 Node[0] Epoch[9] Validation-top_k_accuracy_5=0.999299


INFO:root:Epoch[9] Validation-top_k_accuracy_10=1.000000


2016-10-26 19:38:09,525 Node[0] Epoch[9] Validation-top_k_accuracy_10=1.000000


INFO:root:Epoch[9] Validation-top_k_accuracy_20=1.000000


2016-10-26 19:38:09,526 Node[0] Epoch[9] Validation-top_k_accuracy_20=1.000000

可以看到,验证集上的准确率接近于1,这说明我们的安装过程是成功的。 总结一下期间遇到的错误: 1.CMake Error: The following variables are used in this project, but they are set to NOTFOUND. Please set them or make sure they are set and tested correctly in the CMake files: CUDA_cublas_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet CUDA_cublas_device_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet CUDA_curand_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet 解决方法: 参考github上的issue,换成64位编译器。 2.无法打开包括文件:opencv2.hpp 解决方法: 在项目属性页的VC++标签页中的包含目录选项中加入opencv的头文件路径G:\opencv\build\include即可。 3.错误 5373 error LNK2001: 无法解析的外部符号 "int __cdecl cv::_interlockedExchangeAdd(int *,int)"(?_interlockedExchangeAdd@cv@@YAHPEAHH@Z) 解决方法: 在项目属性页的标签页中的链接器下的附加依赖项属性中加入opencv的库文件G:\opencv\build\x64\vc12\lib\opencv_core2413.lib

参考

1.mxnet配置安装 2.https://github.com/dmlc/mxnet/issues/655

Windows安装mxnet