首页 > 代码库 > Struck跟踪算法(一)

Struck跟踪算法(一)

          Struck跟踪算法:Structed Output Tracking with Kernels   (ICCV /2011年)   

                            原理:  Adaptive tracking-by-detection methods

          最近做项目,需要借鉴一下这个算法,于是就打算好好学习这个算法。

          算法下载地址:http://download.csdn.net/detail/sunboyiris/7681943

          首先介绍一下如何调通这个算法,首先要引入两个库:Eigen库和OpenCV库

         Eigen库配置:

         Eigen库下载地址:http://eigen.tuxfamily.org/index.php?title=Main_Page#Download

         解压后对VS操作如下:

        然后调用其库函数就OK了。

        

        OpenCV库配置:

        见前面文章

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////、

要看struct跟踪算法的效果,首先要看的是config.txt文件

# quiet mode disables all visual output (for experiments).
quietMode = 0


# debug mode enables additional drawing and visualization.
debugMode = 1


# base path for video sequences.
sequenceBasePath = sequences   //路径


# path for output results file.
# comment this out to disable output.
#resultsPath = log.txt


# video sequence to run the tracker on.
# comment this out to use webcam.
#sequenceName = girl
sequenceName = girl  //调用算法提供的图像序列


# frame size for use during tracking.
# the input image will be scaled to this size.
frameWidth = 320
frameHeight = 240


# seed for random number generator.
seed = 0


# tracker search radius in pixels.
searchRadius = 30


# SVM regularization parameter.
svmC = 100.0   
# SVM budget size (0 = no budget).
svmBudgetSize = 100


# image features to use.
# format is: feature kernel [kernel-params]
# where:
#   feature = haar/raw/histogram
#   kernel = gaussian/linear/intersection/chi2
#   for kernel=gaussian, kernel-params is sigma
# multiple features can be specified and will be combined
feature = haar gaussian 0.2  //haar gaussian系数设置
#feature = raw gaussian 0.1
#feature = histogram intersection

在此就配置好了参数,看一下运行效果:


      


      

          

          

      

Struck跟踪算法(一)