首页 > 代码库 > 算法笔记_003:矩阵相乘问题【分治法】

算法笔记_003:矩阵相乘问题【分治法】

目录

1 问题描述 

1.1实验题目 

1.2实验目的 

1.3实验要求 

2 解决方案 

2.1 分治法原理简述 

2.2 分治法求解矩阵相乘原理 

2.3 具体实现源码 

2.4 运算结果截图 

 


1 问题描述

1.1实验题目

    M1M2是两个n×n的矩阵,设计算法计算M1×M2 的乘积。

1.2实验目的

    (1)提高应用蛮力法设计算法的技能;

    (2)深刻理解并掌握分治法的设计思想;

    (3)理解这样一个观点:用蛮力法设计的算法,一般来说,经过适度的努力后,都可以对其进行改进,以提高算法的效率。

1.3实验要求

    (1)设计并实现用BF(Brute-Force,即蛮力法)方法求解矩阵相乘问题的算法;

    (2)设计并实现用DACDivide-And-Conquer,即分治法)方法求解矩阵相乘问题的算法;

    (3)以上两种算法的输入既可以手动输入,也可以自动生成;

    (4)对上述两个算法进行时间复杂性分析,并设计实验程序验证分析结果;

    (5)设计可供用户选择算法的交互式菜单(放在相应的主菜单下)

 


2 解决方案

2.1 分治法原理简述

    分治法的设计思想是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

    分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

    如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

    分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决

2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

2.2 分治法求解矩阵相乘原理

首先了解一下传统计算矩阵相乘的原理:

 技术分享

技术分享

 

其次,看一下优化后的矩阵相乘法原理:

 技术分享

 

最后,看一下本文利用分治法求解矩阵相乘的原理(PS:本文求解其效率不是最高,主要是体验一下分治法,重点在于分治法):

注意:使用分治法求解两个nxn阶矩阵相乘,其中n值为2的幂值,否则只能使用蛮力法计算。

技术分享

技术分享

本文具体源码主要根据以上分块矩阵方法,先分块(即使用分治法),然后递归求解。

 

2.3 具体实现源码

package com.liuzhen.dac;

public class Matrix {
    
    //初始化一个随机nxn阶矩阵
    public static int[][] initializationMatrix(int n){
        int[][] result = new int[n][n];
        for(int i = 0;i < n;i++){
            for(int j = 0;j < n;j++){
                result[i][j] = (int)(Math.random()*10); //采用随机函数随机生成1~10之间的数
            }
        }            
        return result;            
    }
    
    //蛮力法求解两个nxn和nxn阶矩阵相乘
    public static int[][] BruteForce(int[][] p,int[][] q,int n){
        int[][] result = new int[n][n];
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                result[i][j] = 0;
                for(int k=0;k<n;k++){
                    result[i][j] += p[i][k]*q[k][j];
                }
            }
        }                
        return result;
    }
    
    //分治法求解两个nxn和nxn阶矩阵相乘
    public static int[][] DivideAndConquer(int[][] p,int[][] q,int n){
        int[][] result = new int[n][n];
        //当n为2时,返回矩阵相乘结果
        if(n == 2){
            result = BruteForce(p,q,n);            
            return result;
        }
        
        //当n大于3时,采用采用分治法,递归求最终结果
        if(n > 2){
            int m = n/2;
            
            int[][] p1 = QuarterMatrix(p,n,1);
            int[][] p2 = QuarterMatrix(p,n,2);
            int[][] p3 = QuarterMatrix(p,n,3);
            int[][] p4 = QuarterMatrix(p,n,4);
//            System.out.println();
//            System.out.print("矩阵p1值为:");
//            PrintfMatrix(p1,m);
//            System.out.println();
//            System.out.print("矩阵p2值为:");
//            PrintfMatrix(p2,m);
//            System.out.println();
//            System.out.print("矩阵p3值为:");
//            PrintfMatrix(p3,m);
//            System.out.println();
//            System.out.print("矩阵p4值为:");
//            PrintfMatrix(p4,m);
            
            int[][] q1 = QuarterMatrix(q,n,1);
            int[][] q2 = QuarterMatrix(q,n,2);
            int[][] q3 = QuarterMatrix(q,n,3);
            int[][] q4 = QuarterMatrix(q,n,4);
            
            int[][] result1 = QuarterMatrix(result,n,1);
            int[][] result2 = QuarterMatrix(result,n,2);
            int[][] result3 = QuarterMatrix(result,n,3);
            int[][] result4 = QuarterMatrix(result,n,4);
            
            
            result1 = AddMatrix(DivideAndConquer(p1,q1,m),DivideAndConquer(p2,q3,m),m);
            result2 = AddMatrix(DivideAndConquer(p1,q2,m),DivideAndConquer(p2,q4,m),m);
            result3 = AddMatrix(DivideAndConquer(p3,q1,m),DivideAndConquer(p4,q3,m),m);
            result4 = AddMatrix(DivideAndConquer(p3,q2,m),DivideAndConquer(p4,q4,m),m);
            
            
            result = TogetherMatrix(result1,result2,result3,result4,m);
        }
        return result;
    }
    
    //获取矩阵的四分之一,并决定返回哪一个四分之一
    public static int[][] QuarterMatrix(int[][] p,int n,int number){
        int rows = n/2;   //行数减半
        int cols = n/2;   //列数减半
        int[][] result = new int[rows][cols];
        switch(number){
           case 1 :
           {
              // result = new int[rows][cols];
               for(int i=0;i<rows;i++){
                   for(int j=0;j<cols;j++){
                       result[i][j] = p[i][j];
                   }
               }
               break;
           }
            
           case 2 :
           {
              // result = new int[rows][n-cols];
               for(int i=0;i<rows;i++){
                   for(int j=0;j<n-cols;j++){
                       result[i][j] = p[i][j+cols];
                   }
               }
               break;
           }
           
           case 3 :
           {
              // result = new int[n-rows][cols];
               for(int i=0;i<n-rows;i++){
                   for(int j=0;j<cols;j++){
                       result[i][j] = p[i+rows][j];
                   }
               }
               break;
           }
           
           case 4 :
           {
              // result = new int[n-rows][n-cols];
               for(int i=0;i<n-rows;i++){
                   for(int j=0;j<n-cols;j++){
                       result[i][j] = p[i+rows][j+cols];
                   }
               }
               break;
           }
           
           default:
               break;
        }
        
        return result;
     }
    
    //把均分为四分之一的矩阵,聚合成一个矩阵,其中矩阵a,b,c,d分别对应原完整矩阵的四分中1、2、3、4
    public static int[][] TogetherMatrix(int[][] a,int[][] b,int[][] c,int[][] d,int n){
        int[][] result = new int[2*n][2*n];
        for(int i=0;i<2*n;i++){
            for(int j=0;j<2*n;j++){
                if(i<n){
                    if(j<n){
                        result[i][j] = a[i][j];
                    }
                    else
                        result[i][j] = b[i][j-n];
                }
                else{
                    if(j<n){
                        result[i][j] = c[i-n][j];
                    }
                    else{
                        result[i][j] = d[i-n][j-n];
                    }
                }
            }
        }
        
        return result;
    }
    
    
    //求两个矩阵相加结果
    public static int[][] AddMatrix(int[][] p,int[][] q,int n){
        int[][] result = new int[n][n];
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                result[i][j] = p[i][j]+q[i][j];
            }
        }
        return result;
    }
    
    //控制台输出矩阵
    public static void PrintfMatrix(int[][] matrix,int n){
        for(int i=0;i<n;i++){
            System.out.println();
            for(int j=0;j<n;j++){
                System.out.print("\t");
                System.out.print(matrix[i][j]);
            }
        }
        
    }
    
    public static void main(String args[]){
        int[][] p = initializationMatrix(8);
        int[][] q = initializationMatrix(8);
        System.out.print("矩阵p初始化值为:");
        PrintfMatrix(p,8);
        System.out.println();
        System.out.print("矩阵q初始化值为:");
        PrintfMatrix(q,8);
        
        int[][] bf_result = BruteForce(p,q,8);
        System.out.println();
        System.out.print("蛮力法计算矩阵p*q结果为:");
        PrintfMatrix(bf_result,8);
    
        int[][] dac_result = DivideAndConquer(p,q,8);
        System.out.println();
        System.out.print("分治法计算矩阵p*q结果为:");
        PrintfMatrix(dac_result,8);
    }

}

 

2.4 运算结果截图

 技术分享

 

参考资料:

    1、009-矩阵乘法-分治法-《算法设计技巧与分析》M.H.A学习笔记

     2、 Strassen矩阵乘法(分治法续)

算法笔记_003:矩阵相乘问题【分治法】