首页 > 代码库 > ACM1558两线段相交判断和并查集

ACM1558两线段相交判断和并查集

Segment set

Problem Description
A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.

 

 

Input
In the first line there is an integer t - the number of test case. For each test case in first line there is an integer n (n<=1000) - the number of commands. 

There are two different commands described in different format shown below:

P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.

k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
 
Output
For each Q-command, output the answer. There is a blank line between test cases.
 
Sample Input
1
10
P 1.00 1.00 4.00 2.00
P 1.00 -2.00 8.00 4.00
Q 1P 2.00 3.00 3.00 1.00
Q 1
Q 3
P 1.00 4.00 8.00 2.00
Q 2
P 3.00 3.00 6.00 -2.00
Q 5
 
Sample Output
1
2
2
2
5
题意是要求输入一些线段,判断这些线段连接成几个集合,然后求包含某条线段的集合中的元素个数;

 本题主要难关是判断量条线段是否相交,在我这篇文章里有详细介绍判断两条线段相交的方法。http://www.cnblogs.com/sytu/articles/3876585.html;

Notice:二维向量的叉乘公式是 axb=(x1,y1)x(x2,y2)=x1*y2-y1*x2;

下面为AC代码:

  1 #include<iostream>  2 using namespace std;  3 #define MIN(x,y) (x < y ? x : y)  4 #define MAX(x,y) (x > y ? x : y)  5 typedef struct   6 {  7     double x,y;  8 } Point;  9 struct LINE 10 { 11     double x1,x2,y1,y2; 12     int flag;     13 }; 14 LINE *line; 15 int lineintersect(int a,int b) 16 { 17     Point p1,p2,p3,p4; 18     p1.x=line[a].x1;p1.y=line[a].y1; 19     p2.x=line[a].x2;p2.y=line[a].y2; 20     p3.x=line[b].x1;p3.y=line[b].y1; 21     p4.x=line[b].x2;p4.y=line[b].y2; 22      23     Point tp1,tp2,tp3,tp4,tp5,tp6; 24     if ((p1.x==p3.x&&p1.y==p3.y)||(p1.x==p4.x&&p1.y==p4.y)||(p2.x==p3.x&&p2.y==p3.y)||(p2.x==p4.x&&p2.y==p4.y)) 25         return 1; 26 //快速排斥试验 27 if(MAX(p1.x,p2.x)<MIN(p3.x,p4.x)||MAX(p3.x,p4.x)<MIN(p1.x,p2.x)||MAX(p1.y,p2.y)<MIN(p3.y,p4.y)||MAX(p3.y,p4.y)<MIN(p1.y,p2.y)) 28             return 0; 29 //跨立试验 30     tp1.x=p1.x-p3.x; 31     tp1.y=p1.y-p3.y; 32     tp2.x=p4.x-p3.x; 33     tp2.y=p4.y-p3.y; 34     tp3.x=p2.x-p3.x; 35     tp3.y=p2.y-p3.y;//从这到上面是一组的向量 36     tp4.x=p2.x-p4.x;//下面是一组的向量 37     tp4.y=p2.y-p4.y; 38     tp5.x=p2.x-p3.x; 39     tp5.y=p2.y-p3.y; 40     tp6.x=p2.x-p1.x; 41     tp6.y=p2.y-p1.y; 42     if ((tp1.x*tp2.y-tp1.y*tp2.x)*(tp2.x*tp3.y-tp2.y*tp3.x)>=0) //此处用到了叉乘公式 43     { 44         if((tp4.x*tp6.y-tp4.y*tp6.x)*(tp6.x*tp5.y-tp6.y*tp5.x)>=0) 45             return 1;   46     } 47 return 0; 48 } 49 int find(int x) 50 { 51     if(0>line[x].flag)return x; 52     return line[x].flag=find(line[x].flag); 53 } 54 void Union(int a,int b) 55 { 56     int fa=find(a); 57     int fb=find(b); 58     if(fa==fb)return; 59     int n1=line[fa].flag; 60     int n2=line[fb].flag; 61     if(n1>n2) 62     { 63         line[fa].flag=fb; 64         line[fb].flag+=n1; 65     } 66     else  67     { 68         line[fb].flag=fa; 69         line[fa].flag+=n2; 70     } 71 } 72 void throwinto(int n) 73 { 74     if(n>1) 75     { 76         for(int i=1;i<n;i++) 77         { 78             if(lineintersect(i,n)) 79             Union(i,n); 80         } 81     } 82 } 83 int main() 84 { 85     int t; 86     cin>>t; 87     int n,q; 88     int cn=t; 89     while(t--) 90     { 91          92         int cnt=1; 93         cin>>n; 94         line=new LINE[n+1]; 95         for(int i=0;i<=n;i++) 96         { 97             line[i].flag=-1; 98         } 99         for(int i=1;i<=n;i++)100         {101             char sj;102             cin>>sj;103             if(sj==P)104             {105                 cin>>line[cnt].x1>>line[cnt].y1>>line[cnt].x2>>line[cnt].y2;106                 throwinto(cnt);107                 cnt++;108             }109             else if(sj==Q)110             {111                 cin>>q;112                 int re=find(q);113                 cout<<-line[re].flag<<endl;114             }115         }116         if(t>0)cout<<endl;//注意格式问题,容易出错117     }118     return 0;119 }