首页 > 代码库 > hdu 1558 线段相交+并查集路径压缩
hdu 1558 线段相交+并查集路径压缩
Segment set
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3457 Accepted Submission(s): 1290
Problem Description
A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.
Input
In the first line there is an integer t - the number of test case. For each test case in first line there is an integer n (n<=1000) - the number of commands.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
Output
For each Q-command, output the answer. There is a blank line between test cases.
Sample Input
1
10
P 1.00 1.00 4.00 2.00
P 1.00 -2.00 8.00 4.00
Q 1
P 2.00 3.00 3.00 1.00
Q 1
Q 3
P 1.00 4.00 8.00 2.00
Q 2
P 3.00 3.00 6.00 -2.00
Q 5
Sample Output
12225
Author
LL
Source
HDU 2006-12 Programming Contest
题目大意:有n个指令,p加入一条线段,q查询id线段所在集合(两线段有交点为同一集合)的元素个数。
思路:用并查集路径压缩记录各个线段间的关系,根据叉积的定义有:Cross(v,w)=0时w在v上,>0时w在v上方,<0时w在v下方。
两线段有交点的必要条件:必须每条线段的两个端点在另一线段的两侧或直线上。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 using namespace std; 6 7 const double eps=1e-8; 8 const int maxn=1005; 9 int f[maxn];10 struct Point11 {12 double x,y;13 Point(){}14 Point(double x,double y):x(x),y(y){}15 };16 struct Line17 {18 Point a,b;19 }L[maxn];20 typedef Point Vector;21 Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}22 int dcmp(double x)23 {24 if(fabs(x)<eps) return 0;25 else return x<0?-1:1;26 }27 double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积28 29 bool judge(Line a,Line b)//Cross(v,w)=0时w在v上,>0时w在v上方,<0时w在v下方30 {31 if(dcmp(Cross(a.a-b.a,b.b-b.a)*Cross(a.b-b.a,b.b-b.a))<=032 &&dcmp(Cross(b.a-a.a,a.b-a.a)*Cross(b.b-a.a,a.b-a.a))<=0)33 return true;34 return false;35 }36 int findset(int x){return f[x]!=x?f[x]=findset(f[x]):x;}37 void Union(int a,int b)38 {39 a=findset(a);b=findset(b);40 if(a!=b) f[a]=b;41 }42 int main()43 {44 int t,n,i,j,id;45 char op[5];46 double x1,y1,x2,y2;47 scanf("%d",&t);48 while(t--)49 {50 scanf("%d",&n);51 int cnt=0;52 for(i=0;i<n;i++)53 {54 scanf("%s",op);55 if(op[0]==‘P‘)56 {57 scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);58 L[++cnt].a=Point(x1,y1);L[cnt].b=Point(x2,y2);59 f[cnt]=cnt;60 for(j=1;j<=cnt-1;j++)61 if(judge(L[cnt],L[j]))62 Union(j,cnt);63 }64 else 65 {66 int ans=0;scanf("%d",&id);67 id=findset(id);68 for(j=1;j<=cnt;j++)69 if(findset(j)==id)70 ans++;71 printf("%d\n",ans);72 }73 }74 if(t) printf("\n");75 }76 return 0;77 }
hdu 1558 线段相交+并查集路径压缩
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。