首页 > 代码库 > Maximum Subarray leetcode java
Maximum Subarray leetcode java
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle
题解:
这道题要求 求连续的数组值,加和最大。
试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:
1. 要么加入之前的数组加和之中(跟别人一组)
2. 要么自己单立一个数组(自己单开一组)
所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。
所以利用一个sum数组,记录每一轮sum的最大值,sum[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即位答案。
代码如下;
2 int[] sum = new int[A.length];
3
4 int max = A[0];
5 sum[0] = A[0];
6
7 for (int i = 1; i < A.length; i++) {
8 sum[i] = Math.max(A[i], sum[i - 1] + A[i]);
9 max = Math.max(max, sum[i]);
10 }
11
12 return max;
13 }
同时发现,这道题是经典的问题,是1977布朗的一个教授提出来的。
http://en.wikipedia.org/wiki/Maximum_subarray_problem
并发现,这道题有两种经典解法,一个是:Kadane算法,算法复杂度O(n);另外一个是分治法:算法复杂度为O(nlogn)。
1. Kadane算法
代码如下:
2 int max_ending_here = 0;
3 int max_so_far = Integer.MIN_VALUE;
4
5 for(int i = 0; i < A.length; i++){
6 if(max_ending_here < 0)
7 max_ending_here = 0;
8 max_ending_here += A[i];
9 max_so_far = Math.max(max_so_far, max_ending_here);
10 }
11 return max_so_far;
12 }
2. 分治法:
代码如下:
2 return divide(A, 0, A.length-1);
3 }
4
5 public int divide(int A[], int low, int high){
6 if(low == high)
7 return A[low];
8 if(low == high-1)
9 return Math.max(A[low]+A[high], Math.max(A[low], A[high]));
10
11 int mid = (low+high)/2;
12 int lmax = divide(A, low, mid-1);
13 int rmax = divide(A, mid+1, high);
14
15 int mmax = A[mid];
16 int tmp = mmax;
17 for(int i = mid-1; i >=low; i--){
18 tmp += A[i];
19 if(tmp > mmax)
20 mmax = tmp;
21 }
22 tmp = mmax;
23 for(int i = mid+1; i <= high; i++){
24 tmp += A[i];
25 if(tmp > mmax)
26 mmax = tmp;
27 }
28 return Math.max(mmax, Math.max(lmax, rmax));
29
30 }
Reference:
http://en.wikipedia.org/wiki/Maximum_subarray_problem
http://www.cnblogs.com/statical/articles/3054483.html
http://blog.csdn.net/xshengh/article/details/12708291