首页 > 代码库 > 线段树模板

线段树模板

//线段树模板
struct line
{

int left,right;//左端点、右端点
int n;//记录这条线段出现了多少次,默认为0
};
struct line a[100];
int sum;
//建立
void build(int s,int t,int n)
{

int mid=(s+t)/2;
a[n].left=s;
a[n].right=t;
if (s==t) return;
a[n].left=s;
a[n].right=t; 
build(s,mid,2*n);
build(mid+1,t,2*n+1);

//插入
void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{     if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}
//访问
void count (int s,int t,int step)
{   

 if (a[step].n!=0)

sum=sum+a[step].n*(t-s+1);
 if (a[step].left==a[step].right)

return;
     int mid=(a[step].left+a[step].right)/2;
     if (mid>=t)

count(s,t,step*2);
     else

 if (mid<s)

 count(s,t,step*2+1);
     else
     {
            count(s,mid,step*2);
            count(mid+1,t,step*2+1);
      }
}

下面来自某大牛解释:

线段树的定义

定义1 长度为1的线段称为元线段。

定义2 一棵树被成为线段树,当且仅当这棵树满足如下条件:

(1)该树是一棵二叉树。

(2)树中每一个结点都对应一条线段[a,b]。

(3)树中结点是叶子结点当且仅当它所代表的线段是元线段。

(4)树中非叶子结点都有左右两个子树,做子树树根对应线段[a , (a + b ) / 2],右子树树根对应线段[( a + b ) / 2 , b]。

但是这种二叉树较为平衡,和静态二叉树一样,提前根据应用的部分建立好树形结构。针对性强,所以效率要高。一般来说,动态结构较为灵活,但是速度较慢;静态结构节省内存,速度较快。

线段树的性质与时空复杂度简介

下面介绍线段树的两个性质(证明略)。

性质1 长度范围为[1,L]的一棵线段树的深度不超过log(L-1) + 1。

性质2 线段树把区间上的任意一条长度为L的线段都分成不超过2logL条线段。

空间复杂度 存储一棵线段树的空间复杂度一般为O(L)。

时间复杂度 对于插入线段、删除线段,查找元素,查找区间最值等操作,复杂度一般都是O(log L)。

线段树主要应用了平衡与分治的性质,所以基本时间复杂度都和log有关。我们在应用线段树解决问题的时候,应尽量在构造好线段树的时候,使每种操作在同一层面上操作的次数为O(1),这样能够维持整体的复杂度O(log L)。

例题:

在自然数,且所有的数不大于30000的范围内讨论一个问题:现在已知n条线段,把端点依次输入告诉你,然后有m个询问,每个询问输入一个点,要求这个点在多少条线段上出现过;

最基本的解法当然就是读一个点,就把所有线段比一下,看看在不在线段中;

每次询问都要把n条线段查一次,那么m次询问,就要运算m*n次,复杂度就是O(m*n)

这道题m和n都是30000,那么计算量达到了10^9;而计算机1秒的计算量大约是10^8的数量级,所以这种方法无论怎么优化都是超时

-----

因为n条线段是固定的,所以某种程度上说每次都把n条线段查一遍有大量的重复和浪费;

线段树就是可以解决这类问题的数据结构

举例说明:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次

在[0,7]区间上建立一棵满二叉树:(为了和已知线段区别,用【】表示线段树中的线段)

                                【0,7】
                         /                  \
                  【0,3】                      【4,7】
                  /      \                     /     \
             【0,1】     【2,3】          【4,5】      【6,7】
             /      \   /      \        /      \      /     \
        【0,0】【1,1】【2,2】 【3,3】【4,4】 【5,5】 【6,6】【7,7】

每个节点用结构体:

struct line
{
      int left,right;//左端点、右端点
      int n;//记录这条线段出现了多少次,默认为0
}a[16];

和堆类似,满二叉树的性质决定a[i]的左儿子是a[2*i]、右儿子是a[2*i+1];

然后对于已知的线段依次进行插入操作:

从树根开始调用递归函数insert

void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{
      if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}

三条已知线段插入过程:

[2,5]

--[2,5]与【0,7】比较,分成两部分:[2,3]插到左儿子【0,3】,[4,5]插到右儿子【4,7】

--[2,3]与【0,3】比较,插到右儿子【2,3】;[4,5]和【4,7】比较,插到左儿子【4,5】

--[2,3]与【2,3】匹配,【2,3】记录+1;[4,5]与【4,5】匹配,【4,5】记录+1

[4,6]

--[4,6]与【0,7】比较,插到右儿子【4,7】

--[4,6]与【4,7】比较,分成两部分,[4,5]插到左儿子【4,5】;[6,6]插到右儿子【6,7】

--[4,5]与【4,5】匹配,【4,5】记录+1;[6,6]与【6,7】比较,插到左儿子【6,6】

--[6,6]与【6,6】匹配,【6,6】记录+1

[0,7]

--[0,7]与【0,7】匹配,【0,7】记录+1

插入过程结束,线段树上的记录如下(红色数字为每条线段的记录n):

                 0,7
                                                    1
                               /                                            \
                     
0,3                                           4,7
                         0                                                     0
                 /                 \                                     /                 \
       
0,1                 2,3                4,5                6,7
            0                           1                          2                         0
          /    \                      /      \                     /     \                    /      \
0,0 1,1 2,2 3,3 4,4 5,5 6,6 7,7
     0            0            0            0            0            0           1           0

询问操作和插入操作类似,也是递归过程,略

2——依次把【0,7】 【0,3】 【2,3】【2,2】的记录n加起来,结果为2

4——依次把【0,7】 【4,7】 【4,5】【4,4】的记录n加起来,结果为3

7——依次把【0,7】 【4,7】 【6,7】【7,7】的记录n加起来,结果为1

不管是插入操作还是查询操作,每次操作的执行次数仅为树的深度——logN

建树有n次插入操作,n*logN,一次查询要logN,m次就是m*logN;总共复杂度O(n+m)*logN,这道题N不超过30000,logN约等于14,所以计算量在10^5~10^6之间,比普通方法快了1000倍;

这道题是线段树最基本的操作,只用到了插入和查找;删除操作和插入类似,扩展功能的还有测度、连续段数等等,在N数据范围很大的时候,依然可以用离散化的方法建树