首页 > 代码库 > POJ3264_Balanced Lineup(线段树/单点更新)
POJ3264_Balanced Lineup(线段树/单点更新)
解题报告
题意:
求区间内最大值和最小值的差值。
思路:
裸线段树,我的线段树第一发。区间最值。
#include <iostream> #include <cstring> #include <cstdio> #define inf 99999999 #define LL long long using namespace std; LL minn[201000],maxx[201000]; void update(LL root,LL l,LL r,LL p,LL v) { if(l==r)minn[root]=v,maxx[root]=v; if(l<r) { LL mid=(l+r)/2; if(p<=mid)update(root*2,l,mid,p,v); else update(root*2+1,mid+1,r,p,v); minn[root]=min(minn[root*2],minn[root*2+1]); maxx[root]=max(maxx[root*2],maxx[root*2+1]); } } LL q_minn(LL root,LL l,LL r,LL ql,LL qr) { LL mid=(l+r)/2,ans=inf; if(ql<=l&&r<=qr)return minn[root]; if(ql<=mid)ans=min(ans,q_minn(root*2,l,mid,ql,qr)); if(qr>mid)ans=min(ans,q_minn(root*2+1,mid+1,r,ql,qr)); return ans; } LL q_maxx(int root ,int l,int r,int ql,int qr) { LL mid=(l+r)/2,ans=-inf; if(ql<=l&&r<=qr)return maxx[root]; if(ql<=mid)ans=max(ans,q_maxx(root*2,l,mid,ql,qr)); if(mid<qr)ans=max(ans,q_maxx(root*2+1,mid+1,r,ql,qr)); return ans; } int main() { LL a,n,i,j,q,ql,qr; scanf("%lld%lld",&n,&q); for(i=1; i<=n; i++) { scanf("%lld",&a); update(1,1,n,i,a); } while(q--) { scanf("%lld%lld",&ql,&qr); printf("%lld\n",q_maxx(1,1,n,ql,qr)-q_minn(1,1,n,ql,qr)); } return 0; }
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 34181 | Accepted: 16065 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0