首页 > 代码库 > 机器学习(3)-Tensorflow安装与测试
机器学习(3)-Tensorflow安装与测试
安装、
# Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev
# Ubuntu/Linux 64-bit, CPU only, Python 2.7 $ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl
# Python 2 $ sudo pip install --upgrade $TF_BINARY_URL # Python 3 $ sudo pip3 install --upgrade $TF_BINARY_URL
测试一、
$ python ... >>> import tensorflow as tf >>> hello = tf.constant(‘Hello, TensorFlow!‘) >>> sess = tf.Session() >>> print(sess.run(hello)) Hello, TensorFlow! >>> a = tf.constant(10) >>> b = tf.constant(32) >>> print(sess.run(a + b)) 42 >>>
测试二、
import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random learning_rate = 0.01 training_epochs = 1000 display_step = 50 #数据集x train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,9.27,3.1]) #数据集y train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09, 2.827,3.19,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] X = tf.placeholder("float") Y = tf.placeholder("float") W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") pred = tf.add(tf.mul(X, W), b) cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) # 训练数据 for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) print "优化完成!" training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), ‘\n‘ #可视化显示 plt.plot(train_X, train_Y, ‘ro‘, label=‘Original data‘) plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label=‘Fitted line‘) plt.legend() plt.show()
测试二效果:
更多技术干货请关注:
机器学习(3)-Tensorflow安装与测试
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。