首页 > 代码库 > 求最大公约数(GCD)的两种算法
求最大公约数(GCD)的两种算法
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种、在处理大数时更优秀的算法——Stein
特此记载
1.欧几里得(Euclid)算法
又称辗转相除法,依据定理gcd(a,b)=gcd(b,a%b)
实现过程演示: sample:gcd(15,10)=gcd(10,5)=gcd(5,0)=5
C语言实现:
1 int Euclid_GCD(int a, int b) 2 { 3 return b?Euclid_GCD(b, a%b):a; 4 }
2.Stein 算法
一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过 64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算 128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。
依据定理:
gcd(a,a)=a,也就是一个数和其自身的公约数仍是其自身。
gcd(ka,kb)=k*gcd(a,b),也就是最大公约数运算和倍乘运算可以交换。特殊地,当k=2时,说明两个偶数的最大公约数必然能被2整除。
当k与b互为质数,gcd(ka,b)=gcd(a,b),也就是约掉两个数中只有其中一个含有的因子不影响最大公约数。特殊地,当k=2时,说明计算一个偶数和一个奇数的最大公约数时,可以先将偶数除以2。
C语言实现:
1 int Stein_GCD(int x, int y) 2 { 3 if (x == 0) return y; 4 if (y == 0) return x; 5 if (x % 2 == 0 && y % 2 == 0) 6 return 2 * Stein_GCD(x >> 1, y >> 1); 7 else if (x % 2 == 0) 8 return Stein_GCD(x >> 1, y); 9 else if (y % 2 == 0) 10 return Stein_GCD(x, y >> 1); 11 else 12 return Stein_GCD(min(x, y), fabs(x - y)); 13 }
求最大公约数(GCD)的两种算法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。