首页 > 代码库 > Strategic Game
Strategic Game
Strategic Game |
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 141 Accepted Submission(s): 96 |
Problem Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him? Your program should find the minimum number of soldiers that Bob has to put for a given tree. The input file contains several data sets in text format. Each data set represents a tree with the following description: the number of nodes the description of each node in the following format node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier or node_identifier:(0) The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data. For example for the tree: the solution is one soldier ( at the node 1). The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table: |
Sample Input 40:(1) 11:(2) 2 32:(0)3:(0)53:(3) 1 4 21:(1) 02:(0)0:(0)4:(0) |
Sample Output 12 |
Source Southeastern Europe 2000 |
Recommend JGShining |
/*初步思想:树状DP+搜索加一个标记现在这个节点放不放士兵1A,哈哈哈哈*/#include<bits/stdc++.h>#define N 1505using namespace std;vector<int>edge[N];int n;int u,m,v;int dp[N][2];//dp[i][1/0]表示以i为根节点放士兵和不放士兵的最小值void dfs(int root,int fa){ dp[root][1]=1; dp[root][0]=0; for(int i=0;i<edge[root].size();i++){ int v=edge[root][i]; if(v==fa) continue; dfs(v,root); dp[root][0]+=dp[v][1]; dp[root][1]+=min(dp[v][0],dp[v][1]); }}int main(){ //freopen("C:\\Users\\acer\\Desktop\\in.txt","r",stdin); while(scanf("%d",&n)!=EOF){ memset(dp,0,sizeof dp); for(int i=0;i<=n;i++) edge[i].clear(); for(int i=0;i<n;i++){ scanf("%d:(%d)",&u,&m); for(int j=0;j<m;j++){ scanf("%d",&v); edge[u].push_back(v); edge[v].push_back(u); } }//建图 // for(int i=0;i<n;i++){ // cout<<edge[i].size()<<endl; // } dfs(0,-1); printf("%d\n",min(dp[0][0],dp[0][1])); } return 0;}
Strategic Game
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。