首页 > 代码库 > hdu 3944 dp?
hdu 3944 dp?
DP?
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 128000/128000 K (Java/Others)
Total Submission(s): 1804 Accepted Submission(s): 595
Problem Description
Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
C(n,0)=C(n,n)=1 (n ≥ 0)
C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
As the answer may be very large, you only need to output the answer mod p which is a prime.
Input
Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
Output
For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
Sample Input
1 1 2
4 2 7
Sample Output
Case #1: 0
Case #2: 5
Author
phyxnj@UESTC
Source
1 #include<iostream> 2 #include<stdio.h> 3 #include<cstring> 4 #include<cstdlib> 5 #include<vector> 6 using namespace std; 7 typedef __int64 LL; 8 vector<LL> dp[10000]; 9 bool s[10001]; 10 void init() 11 { 12 LL i,p,j; 13 memset(s,false,sizeof(s)); 14 for(i=2;i<=10000;i++){ 15 if(s[i]==false) 16 for(j=i*2;j<=10000;j=j+i) 17 s[j]=true; 18 } 19 s[1]=true; 20 for(i=0;i<10000;i++) dp[i].clear(); 21 for(p=1;p<10000;p++) 22 { 23 if(s[p]==true)continue; 24 dp[p].push_back(1); 25 for(i=1;i<=p;i++) 26 { 27 dp[p].push_back((dp[p][i-1]*i)%p); 28 } 29 } 30 } 31 LL pow_mod(LL a,LL n,LL p) 32 { 33 LL ans=1; 34 while(n){ 35 if(n&1) ans=(ans*a)%p; 36 n=n>>1; 37 a=(a*a)%p; 38 } 39 return ans; 40 } 41 LL C(LL a,LL b,LL p) 42 { 43 if(a<b)return 0; 44 if(a==b) return 1; 45 if(b>a-b) b=a-b; 46 LL sum1,sum2; 47 sum1=dp[p][a]; 48 sum2=(dp[p][b]*dp[p][a-b])%p; 49 LL ans=(sum1*pow_mod(sum2,p-2,p))%p; 50 return ans; 51 } 52 LL Lucas(LL n,LL m,LL p) 53 { 54 LL ans=1; 55 while(n&&m&&p){ 56 ans=(ans*C(n%p,m%p,p))%p; 57 n=n/p; 58 m=m/p; 59 } 60 return ans; 61 } 62 int main() 63 { 64 init(); 65 LL n,k,p; 66 int t=0; 67 while(scanf("%I64d%I64d%I64d",&n,&k,&p)>0){ 68 printf("Case #%d: ",++t); 69 if(k>n-k) k=n-k; 70 LL ans=Lucas(n+1,k,p); 71 printf("%I64d\n",(ans+(n-k))%p); 72 } 73 return 0; 74 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。