首页 > 代码库 > 飞跃平野(sdut1124)

飞跃平野(sdut1124)

http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1124

飞跃原野

 

Time Limit: 5000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

勇敢的法里奥出色的完成了任务之后,正在迅速地向自己的基地撤退。但由于后面有着一大群追兵,所以法里奥要尽快地返回基地,否则就会被敌人逮住。

终于,法里奥来到了最后的一站:泰拉希尔原野,穿过这里就可以回到基地了。然而,敌人依然紧追不舍。不过,泰拉希尔的地理条件对法里奥十分有利,众多的湖泊随处分布。敌人需要绕道而行,但法里奥还是决定找一条能尽快回到基地的路。
 
假设泰拉希尔原野是一个m*n的矩阵,它有两种地形,P表示平,L表示湖泊,法里奥只能停留在平地上。他目前的位置在左上角(1,1)处,而目的地为右下角的(m,n)。法里奥可以向前后左右4个方向移动或飞行,每移动1格需要1单位时间。而飞行的时间主要花费在变形上,飞行本身时间消耗很短,所以无论一次飞行多远的距离,都只需要1单位时间。飞行的途中不能变向,并且一次飞行最终必须要降落到平地上。当然,由于受到能量的限制,法里奥不能无限制飞行,他总共最多可以飞行的距离为D。在知道了以上的信息之后,请你帮助法里奥计算一下,他最快到达基地所需要的时间。

输入

第一行是3个整数,m(1≤m≤100),n(1≤n≤100),D(1≤D≤100)。表示原野是m*n的矩阵,法里奥最多只能飞行距离为D。接下来的m行每行有n个字符,相互之间没有空格。P表示当前位置是平地,L则表示湖泊。假定(1,1)和(m,n)一定是平地。

输出

一个整数,表示法里奥到达基地需要的最短时间。如果无法到达基地,则输出impossible。

示例输入

4 4 2PLLPPPLPPPPPPLLP

示例输出

5

我的搜索学的很烂,这题就是一个简单地三维bfs,但拿道题却感到无从下手。搜索的题需要狠狠加强。
bfs中每步都要搜索所有能走的地方,例如这题第一步搜索,上下左右,2~d*上下左右.这是算法的核心。
其他部分都是围绕算法的核心进行。

#include <iostream>#include <stdio.h>#include <string.h>#include <stdlib.h>using namespace std;char map[101][101];int v[101][101][101];int n,m,d;struct node{    int x,y,z;    int ans;}q[1000001];int jx[]={1,-1,0,0};int jy[]={0,0,1,-1};void bfs(){    memset(v,0,sizeof(v));    int e=0;    int s=0;    struct node t,f;    t.x=0;    t.y=0;    t.z=d;    t.ans=0;    v[t.x][t.y][t.z]=1;    q[e++]=t;    while(s<e)    {        t=q[s++];        if(t.x==n-1&&t.y==m-1)        {            printf("%d\n",t.ans);            return ;        }        for(int i=0;i<4;i++)        {            f.x=t.x+jx[i];            f.y=t.y+jy[i];            if(f.x>=0&&f.x<n&&f.y>=0&&f.y<m&&v[f.x][f.y][t.z]==0&&map[f.x][f.y]==P)            {                f.ans=t.ans+1;                f.z=t.z;                v[f.x][f.y][f.z]=1;                q[e++]=f;            }        }        for(int j=2;j<=t.z;j++)        {            for(int i=0;i<4;i++)            {                f.x=t.x+jx[i]*j;                f.y=t.y+jy[i]*j;                if(f.x>=0&&f.x<n&&f.y>=0&&f.y<m&&v[f.x][f.y][t.z-j]==0&&map[f.x][f.y]==P)                {                  f.ans=t.ans+1;                  f.z=t.z-j;                  v[f.x][f.y][f.z]=1;                  q[e++]=f;               }            }        }    }    printf("impossible\n");    return ;}int main(){    while(scanf("%d%d%d",&n,&m,&d)!=EOF)    {        for(int i=0;i<n;i++)        {            scanf("%s",map[i]);        }        bfs();    }    return 0;}