首页 > 代码库 > Spark集群上运行jar程序,状态一直Accepted且不停止不报错
Spark集群上运行jar程序,状态一直Accepted且不停止不报错
如果运行Spark集群时状态一直为Accepted且不停止不报错,比如像下面这样的情况:
15/06/14 11:33:33 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:34 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:35 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:36 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:37 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:38 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:39 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:40 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED) 15/06/14 11:33:41 INFO yarn.Client: Application report for application_1434263747091_0023 (state: ACCEPTED)
一般是由于有多个用户同时向集群提交任务或一个用户向集群同时提交了多个任务导致Yarn资源的分配错误。解决这个问题,只需要更改Hadoop的配置文件:/etc/hadoop/conf/capacity-scheduler.xml,把选项:yarn.scheduler.capacity.maximum-am-resource-percent从0.1改成0.5。顾名思义,这个选项是增加Yarn可调度的资源量,当然也可以视具体情况增加更多。也可见,默认情况下,Yarn没有将很多资源分配给任务的能力。
Spark集群上运行jar程序,状态一直Accepted且不停止不报错
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。