首页 > 代码库 > Spark分析之Standalone运行过程分析

Spark分析之Standalone运行过程分析

一、集群启动过程--启动Master

$SPARK_HOME/sbin/start-master.sh

start-master.sh脚本关键内容:

spark-daemon.sh start org.apache.spark.deploy.master.Master 1 --ip $SPARK_MASTER_IP --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT

日志信息:$SPARK_HOME/logs/

14/07/22 13:41:33 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@hadoop000:7077]14/07/22 13:41:33 INFO master.Master: Starting Spark master at spark://hadoop000:707714/07/22 13:41:33 INFO server.Server: jetty-8.y.z-SNAPSHOT14/07/22 13:41:33 INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:808014/07/22 13:41:33 INFO ui.MasterWebUI: Started MasterWebUI at http://hadoop000:808014/07/22 13:41:33 INFO master.Master: I have been elected leader! New state: ALIVE

 

二、集群启动过程--启动Worker

$SPARK_HOME/sbin/start-slaves.sh

start-slaves.sh脚本关键内容:

spark-daemon.sh start org.apache.spark.deploy.worker.Worker master-spark-URL

Worker运行时,需要注册到指定的master url,这里就是spark://hadoop000:7077

Worker启动之后主要做了两件事情:
  1)将自己注册到Master(RegisterWorker);
  2)定期发送心跳信息给Master;

Worker向Master发送注册信息:

Worker.scala    ==>preStart      ==>registerWithMaster        ==>tryRegisterAllMasters          ==> actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)

Master侧收到RegisterWorker通知:

Master.scala  ==>case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) => {      val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,       sender, workerUiPort, publicAddress)       if (registerWorker(worker)) {         persistenceEngine.addWorker(worker)        sender ! RegisteredWorker(masterUrl, masterWebUiUrl)   //注册成功后向Worker发送注册成功信息        schedule()      }    }

Worker在收到Master发来的注册成功信息后,定期向Master发送心跳信息

Worker.scala  ==>case SendHeartbeat =>    masterLock.synchronized {if (connected) { master ! Heartbeat(workerId) }  }

Master在接收到Worker发送来的心跳信息后更新最后一次心跳时间

Master.scala  ==>case Heartbeat(workerId) => {      idToWorker.get(workerId) match {            case Some(workerInfo) =>          workerInfo.lastHeartbeat = System.currentTimeMillis()      }  }

Master定期移除超时未发送心跳信息给Master的Worker节点

Master.scala  ==>preStart    ==>CheckForWorkerTimeOut      ==>case CheckForWorkerTimeOut => {timeOutDeadWorkers()} //Check for, and remove, any timed-out workers

日志信息:$SPARK_HOME/logs/

Master部分日志信息:

14/07/22 13:41:36 INFO master.Master: Registering worker hadoop000:48343 with 1 cores, 2.0 GB RAM

Worker部分日志信息:

14/07/22 13:41:35 INFO Worker: Starting Spark worker hadoop000:48343 with 1 cores, 2.0 GB RAM14/07/22 13:41:35 INFO Worker: Spark home: /home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.014/07/22 13:41:35 INFO WorkerWebUI: Started WorkerWebUI at http://hadoop000:808114/07/22 13:41:35 INFO Worker: Connecting to master spark://hadoop000:7077...14/07/22 13:41:36 INFO Worker: Successfully registered with master spark://hadoop000:7077

三、Application提交过程

A、提交Application

运行spark-shell: $SPARK_HOME/bin/spark-shell --master spark://hadoop000:7077

日志信息:$SPARK_HOME/work

spark-shell属于application,在启动SparkContext的createTaskScheduler创建SparkDeploySchedulerBackend的过程中创建

client = new AppClient(sc.env.actorSystem, masters, appDesc, this, conf)client.start()

会向Master发送RegisterApplication请求

AppClient.scala  ==>preStart    ==>registerWithMaster      ==>tryRegisterAllMasters        ==>actor ! RegisterApplication(appDescription)

B、 Master处理RegisterApplication的请求

在Master侧其处理的分支是RegisterApplication;Master在收到RegisterApplication请求之后,Master进行调度:如果有worker已经注册上来,发送LaunchExecutor指令给相应worker

Master.scala        ==>case RegisterApplication(description) => {            logInfo("Registering app " + description.name)            val app = createApplication(description, sender)            registerApplication(app)            logInfo("Registered app " + description.name + " with ID " + app.id)            persistenceEngine.addApplication(app)            sender ! RegisteredApplication(app.id, masterUrl)            schedule()        }
==>schedule ==>launchExecutor(worker, exec) ==> worker.addExecutor(exec) worker.actor ! LaunchExecutor(masterUrl,exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory) exec.application.driver ! ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)

C、启动Executor

Worker在收到LaunchExecutor指令之后,会启动Executor进程

Worker.scala    ==>case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>        logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))        val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_,        self, workerId, host,        appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome),        workDir, akkaUrl, ExecutorState.RUNNING)        executors(appId + "/" + execId) = manager        manager.start()        coresUsed += cores_        memoryUsed += memory_        masterLock.synchronized {master ! ExecutorStateChanged(appId, execId, manager.state, None, None)}    }

D、注册Executor

启动的Executor进程会根据启动时的入参,将自己注册到Driver中的SchedulerBackend

SparkDeploySchedulerBackend.scala    ==>preStart   (CoarseGrainedSchedulerBackend)        ==> case RegisterExecutor(executorId, hostPort, cores) =>            logInfo("Registered executor: " + sender + " with ID " + executorId)            sender ! RegisteredExecutor(sparkProperties)            executorActor(executorId) = sender            executorHost(executorId) = Utils.parseHostPort(hostPort)._1            totalCores(executorId) = cores            freeCores(executorId) = cores            executorAddress(executorId) = sender.path.address            addressToExecutorId(sender.path.address) = executorId            totalCoreCount.addAndGet(cores)            makeOffers()CoarseGrainedExecutorBackend.scala    case RegisteredExecutor(sparkProperties) =>        ogInfo("Successfully registered with driver")        executor = new Executor(executorId, Utils.parseHostPort(hostPort)._1, sparkProperties,false)

executor日志信息位置:控制台/$SPARK_HOME/logs

E、运行Task

示例代码:

sc.textFile("hdfs://hadoop000:8020/hello.txt").flatMap(_.split(‘\t‘)).map((_,1)).reduceByKey(_+_).collect

SchedulerBackend收到Executor的注册消息之后,会将提交到的Spark Job分解为多个具体的Task,然后通过LaunchTask指令将这些Task分散到各个Executor上真正的运行

CoarseGrainedSchedulerBackend.scala    def makeOffers() {        launchTasks(scheduler.resourceOffers(            executorHost.toArray.map {case (id, host) => new WorkerOffer(id, host, freeCores(id))}))        }   ==>executorActor(task.executorId) ! LaunchTask(new SerializableBuffer(serializedTask))            ==>CoarseGrainedSchedulerBackend  case LaunchTask(data) =>                  if (executor == null) {                    logError("Received LaunchTask command but executor was null")                    System.exit(1)                  } else {                    val ser = SparkEnv.get.closureSerializer.newInstance()                    val taskDesc = ser.deserialize[TaskDescription](data.value)                    logInfo("Got assigned task " + taskDesc.taskId)                    executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask)                  }    

Master部分日志信息:

14/07/22 15:25:27 INFO master.Master: Registering app Spark shell14/07/22 15:25:27 INFO master.Master: Registered app Spark shell with ID app-20140722152527-000114/07/22 15:25:27 INFO master.Master: Launching executor app-20140722152527-0001/0 on worker worker-20140722134135-hadoop000-48343

Worker部分日志信息:

Spark assembly has been built with Hive, including Datanucleus jars on classpath14/07/22 15:25:27 INFO Worker: Asked to launch executor app-20140722152527-0001/0 for Spark shellSpark assembly has been built with Hive, including Datanucleus jars on classpath14/07/22 15:25:28 INFO ExecutorRunner: Launch command: "java" "-cp" "::/home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.0/conf:/home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.0/lib/spark-assembly-1.0.1-hadoop2.3.0-cdh5.0.0.jar:/home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.0/lib/datanucleus-rdbms-3.2.1.jar:/home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.0/lib/datanucleus-core-3.2.2.jar:/home/spark/app/spark-1.0.1-bin-2.3.0-cdh5.0.0/lib/datanucleus-api-jdo-3.2.1.jar" "-XX:MaxPermSize=128m" "-Xms1024M" "-Xmx1024M" "org.apache.spark.executor.CoarseGrainedExecutorBackend" "akka.tcp://spark@hadoop000:50515/user/CoarseGrainedScheduler" "0" "hadoop000" "1" "akka.tcp://sparkWorker@hadoop000:48343/user/Worker" "app-20140722152527-0001"

控制台部分日志信息:

14/07/22 15:25:31 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@hadoop000:45150/user/Executor#-791712793] with ID 014/07/22 15:25:31 INFO CoarseGrainedExecutorBackend: Successfully registered with driver

每当有新的application注册到master,master都要调度schedule函数将application发送到相应的worker,在对应的worker启动相应的ExecutorBackend,最终的Task就运行在ExecutorBackend中