首页 > 代码库 > ZOJ - 2243 - Binary Search Heap Construction

ZOJ - 2243 - Binary Search Heap Construction

先上题目:

Binary Search Heap Construction

Time Limit: 5 Seconds      Memory Limit: 32768 KB

Read the statement of problem G for the definitions concerning trees. In the following we define the basic terminology of heaps. A heap is a tree whose internal nodes have each assigned a priority (a number) such that the priority of each internal node is less than the priority of its parent. As a consequence, the root has the greatest priority in the tree, which is one of the reasons why heaps can be used for the implementation of priority queues and for sorting.

A binary tree in which each internal node has both a label and a priority, and which is both a binary search tree with respect to the labels and a heap with respect to the priorities, is called a treap. Your task is, given a set of label-priority-pairs, with unique labels and unique priorities, to construct a treap containing this data.

Input Specification

The input contains several test cases. Every test case starts with an integer n. You may assume that 1<=n<=50000. Then follow n pairs of strings and numbers l1/p1,...,ln/pndenoting the label and priority of each node. The strings are non-empty and composed of lower-case letters, and the numbers are non-negative integers. The last test case is followed by a zero.

Output Specification

For each test case output on a single line a treap that contains the specified nodes. A treap is printed as (<left sub-treap><label>/<priority><right sub-treap>). The sub-treaps are printed recursively, and omitted if leafs.

Sample Input

 

7 a/7 b/6 c/5 d/4 e/3 f/2 g/17 a/1 b/2 c/3 d/4 e/5 f/6 g/77 a/3 b/6 c/4 d/7 e/2 f/5 g/10

Sample Output

 

(a/7(b/6(c/5(d/4(e/3(f/2(g/1)))))))(((((((a/1)b/2)c/3)d/4)e/5)f/6)g/7)(((a/3)b/6(c/4))d/7((e/2)f/5(g/1)))

  题意:好像就是叫你求Treap树。给出字符串和优先值,要求建一棵二叉树,根据字符串排序,然后父亲的优先值要比儿子大。然后先序遍历输出这个Treap树。
  最水的方法就是直接先按优先值排序,然后逐个逐个元素添加。但是这样做绝对超时。
  可以通过的第一种方法:首先先按字符串大小排个序,然后从小到大扫描一次,求出每个元素左边优先值比它大的最近的元素的位置在哪。同理从大到小扫描,求出每个元素右边优先值比它大的最近的元素的位置在哪。(没错,就是单调栈),然后在每个扫描到的最近位置加一个对应的括号(左括号或者右括号)就是答案了。总的时间复杂度O(nlogn)。
  第二种方法是用RMQ求出区间优先值的最大值的下标,然后每次找出区间最大值作为根构造两边的子树就可以了。总的时间复杂度也是O(nlogn)。

  比赛的时候用的方法是第二种,但是当时求对数的时候底数不是2,所以提交一直都是段错误。

上代码:


 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define MAX 50002 5 #define INF 0x3f3f3f3f 6 using namespace std; 7  8 typedef struct node{ 9     char l[200];10     int p;11 12     bool operator < (const node& o)const{13         return strcmp(l,o.l)<0;14     }15 }node;16 17 int n;18 node e[MAX];19 char ch[MAX];20 int l[MAX],r[MAX];21 int al[MAX],ar[MAX];22 23 inline void put(char c,int ti){24     for(int i=0;i<ti;i++) putchar(c);25 }26 27 int main()28 {29     char* sp;30     //freopen("data.txt","r",stdin);31     while(scanf("%d",&n),n){32         for(int i=1;i<=n;i++){33             scanf("%s",ch);34             sp=strchr(ch,/);35             *sp=\0;36             sp++;37             strcpy(e[i].l,ch);38             sscanf(sp,"%d",&e[i].p);39             l[i]=r[i]=i;40             al[i]=ar[i]=0;41         }42         sort(e+1,e+n+1);43         e[0].p=e[n+1].p=INF;44         for(int i=1;i<=n;i++){45             while(e[i].p>=e[l[i]-1].p) l[i]=l[l[i]-1];46             al[l[i]]++;47         }48         for(int i=n;i>0;i--){49             while(e[i].p>=e[r[i]+1].p) r[i]=r[r[i]+1];50             ar[r[i]]++;51         }52         for(int i=1;i<=n;i++){53             put((,al[i]);54             printf("%s/%d",e[i].l,e[i].p);55             put(),ar[i]);56         }57         printf("\n");58     }59     return 0;60 }
/*单调栈*/
 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <string> 5 #include <cmath> 6 #define MAX 60002 7 #define ll long long 8 using namespace std; 9 10 typedef struct node{11     string l;12     ll p;13 14     bool operator <(const node& o)const{15         if(l<o.l) return 1;16         return 0;17     }18 }node;19 20 int n;21 node e[MAX];22 char ss[MAX];23 int dp[MAX][20];24 25 void solve(){26     int i,j,l,r;27     for(i=0;i<n;i++) dp[i][0]=i;28     for(j=1;(1<<j)<=n;j++){29         for(i=0;i+(1<<j)-1<n;i++){30             l=dp[i][j-1];   r=dp[i+(1<<(j-1))][j-1];31             if(e[l].p>e[r].p) dp[i][j]=l;32             else dp[i][j]=r;33         }34     }35 }36 37 int rmq(int a,int b){38     int k;39     k=log(b-a+1.0)/log(2.0);40     return (e[dp[a][k]].p>e[dp[b-(1<<k)+1][k]].p ? dp[a][k] : dp[b-(1<<k)+1][k]);41 }42 43 void print(int r,int L,int R){44     int ne;45     putchar(();46     if(r-L>0){47         ne=rmq(L,r-1);48         print(ne,L,r-1);49     }50     for(unsigned int i=0;i<e[r].l.size();i++) putchar(e[r].l[i]);51     printf("/%lld",e[r].p);52     if(R-r>0){53         ne=rmq(r+1,R);54         print(ne,r+1,R);55     }56     putchar());57 }58 59 int main()60 {61     int li;62     char* st;63     //freopen("data.txt","r",stdin);64     while(scanf("%d",&n),n!=0){65         for(int i=0;i<n;i++){66             getchar();67             scanf("%s",ss);68             st=strchr(ss,/);69             *st=\0;70             st++;71             e[i].l=string(ss);72             sscanf(st,"%lld",&e[i].p);73         }74         sort(e,e+n);75         solve();76         li=0;77         for(int i=1;i<n;i++){78             if(e[li].p<e[i].p) li=i;79         }80         print(li,0,n-1);81         printf("\n");82     }83     return 0;84 }
/*RMQ*/