首页 > 代码库 > Validate Binary Search Tree
Validate Binary Search Tree
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node‘s key.
- The right subtree of a node contains only nodes with keys greater than the node‘s key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ‘s Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where ‘#‘ signifies a path terminator where no node exists below.
Here‘s an example:
1
/ 2 3
/
4
5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}"
.思路:判断二叉树是否满足二叉搜索树,可以使用中序遍历的方法,将二叉树遍历一遍,然后判断这个中序遍历是否是递增的,如果不是则返回false,如果不是则返回true;
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: void InOrder(TreeNode *root,vector<int> &result) { if(root==NULL) return; InOrder(root->left,result); result.push_back(root->val); InOrder(root->right,result); } bool isValidBST(TreeNode *root) { vector<int> result; result.clear(); InOrder(root,result); int n=result.size(); for(int i=1;i<n;i++) { if(result[i]<=result[i-1]) return false; } return true; } };
第二种思路:递归判断这个二叉树。首先定义左右边界,判断该节点是否处于这个范围之内,然后递归调用左子树,左右边界为min和root->val,递归调用右子树,左右边界为root->val和max,如果这两者都为真,则返回true,否则返回false。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool check(TreeNode *root,int min,int max) { if(root==NULL) return true; if(root->val>min && root->val<max) { return check(root->left,min,root->val) && check(root->right,root->val,max); } else return false; } bool isValidBST(TreeNode *root) { int min=INT_MIN; int max=INT_MAX; return check(root,min,max); } };
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。