首页 > 代码库 > gabor变换人脸识别的python实现,att_faces数据集平均识别率99%
gabor变换人脸识别的python实现,att_faces数据集平均识别率99%
大家都说gabor做人脸识别是传统方法中效果最好的,这几天就折腾实现了下,网上的python实现实在太少,github上的某个版本还误导了我好几天,后来采用将C++代码封装成dll供python调用的方式,成功解决。
图像经多尺度多方向的gabor变换后,gabor系数的数目成倍上升,所以对gabor系数必须进行降维才能送至后续的SVM分类器。测试图像使用att_faces数据集(40种类型,每种随机选5张训练,5张识别),降维方式我测试了DCT、PCA两种变换方式,说实话,dct不怎么靠谱,居然准确率不到70%,所以我有点怀疑网页 http://blog.csdn.net/bxyill/article/details/793785的实现效果,PCA方式也一般,平均识别率95%左右吧;同时测试了直接下采样、均值滤波后采样、最大值滤波后采样三种方式,它们的平均识别率分别为98.6%、98.5%、99%左右。可见,最大值滤波后再下采样的方式是最好的,其他的非线性降维方法没试过,我也不太懂
下面是python实现代码,不到50行哦
#coding:utf-8 import numpy as np import cv2, os, math, os.path, glob, random from ctypes import * from sklearn.svm import LinearSVC dll = np.ctypeslib.load_library(‘zmGabor‘, ‘.‘) #调用C++动态链接库 print dll.gabor dll.gabor.argtypes = [POINTER(c_uint8), POINTER(c_uint8), c_int32, c_int32, c_double, c_int32, c_double, c_double] def loadImageSet(folder, sampleCount=5): trainData = http://www.mamicode.com/[]; testData = []; yTrain=[]; yTest = [];>
gabor变换人脸识别的python实现,att_faces数据集平均识别率99%
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。