首页 > 代码库 > 【python】pandas & matplotlib 数据处理 绘制曲面图
【python】pandas & matplotlib 数据处理 绘制曲面图
Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形
建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了:
https://www.continuum.io/downloads#windows
脚本默认执行方式: 1.获取当前文件夹下的1.log文件 2.将数据格式化为矩阵 3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标 4.绘制曲面图 |
测试数据
测试所用数据: r_gain=
79.000000f, 89.000000f, 104.000000f, 120.000000f, 135.000000f,
149.000000f, 160.000000f, 172.000000f, 176.000000f, 172.000000f,
164.000000f, 159.000000f, 143.000000f, 128.000000f, 113.000000f,
97.000000f, 81.000000f, r_gain=
84.000000f, 100.000000f, 120.000000f, 136.000000f, 156.000000f,
176.000000f, 192.000000f, 204.000000f, 208.000000f, 204.000000f,
196.000000f, 180.000000f, 164.000000f, 144.000000f, 124.000000f,
108.000000f, 92.000000f, r_gain=
91.000000f, 112.000000f, 132.000000f, 156.000000f, 176.000000f,
200.000000f, 224.000000f, 240.000000f, 248.000000f, 244.000000f,
228.000000f, 208.000000f, 188.000000f, 164.000000f, 140.000000f,
120.000000f, 99.000000f, r_gain=
99.000000f, 120.000000f, 144.000000f, 172.000000f, 200.000000f,
228.000000f, 256.000000f, 276.000000f, 284.000000f, 280.000000f,
264.000000f, 240.000000f, 208.000000f, 180.000000f, 156.000000f,
132.000000f, 105.000000f, r_gain=107.000000f,
128.000000f, 156.000000f, 184.000000f, 216.000000f, 256.000000f,
288.000000f, 308.000000f, 320.000000f, 316.000000f, 296.000000f,
264.000000f, 228.000000f, 196.000000f, 164.000000f, 140.000000f,
113.000000f, r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 232.000000f, 272.000000f,
304.000000f, 332.000000f, 340.000000f, 336.000000f, 316.000000f,
284.000000f, 244.000000f, 204.000000f, 172.000000f, 144.000000f,
117.000000f, r_gain=109.000000f,
136.000000f, 164.000000f, 196.000000f, 232.000000f, 276.000000f,
312.000000f, 336.000000f, 348.000000f, 344.000000f, 320.000000f,
288.000000f, 248.000000f, 208.000000f, 172.000000f, 144.000000f,
117.000000f, r_gain=111.000000f,
132.000000f, 160.000000f, 192.000000f, 228.000000f, 268.000000f,
304.000000f, 328.000000f, 340.000000f, 332.000000f, 312.000000f,
280.000000f, 240.000000f, 200.000000f, 168.000000f, 140.000000f,
119.000000f, r_gain=101.000000f,
128.000000f, 152.000000f, 180.000000f, 212.000000f, 248.000000f,
280.000000f, 304.000000f, 312.000000f, 308.000000f, 288.000000f,
260.000000f, 224.000000f, 192.000000f, 160.000000f, 136.000000f,
109.000000f, r_gain=
95.000000f, 116.000000f, 140.000000f, 164.000000f, 192.000000f,
224.000000f, 248.000000f, 272.000000f, 280.000000f, 272.000000f,
256.000000f, 232.000000f, 200.000000f, 176.000000f, 152.000000f,
128.000000f, 101.000000f, r_gain=
87.000000f, 108.000000f, 128.000000f, 148.000000f, 172.000000f,
192.000000f, 216.000000f, 232.000000f, 236.000000f, 232.000000f,
220.000000f, 200.000000f, 180.000000f, 156.000000f, 136.000000f,
116.000000f, 95.000000f, r_gain=
80.000000f, 96.000000f, 112.000000f, 132.000000f, 148.000000f,
168.000000f, 180.000000f, 192.000000f, 196.000000f, 196.000000f,
184.000000f, 172.000000f, 156.000000f, 136.000000f, 120.000000f,
104.000000f, 88.000000f, r_gain=
69.000000f, 85.000000f, 96.000000f, 111.000000f, 127.000000f,
141.000000f, 153.000000f, 160.000000f, 164.000000f, 159.000000f,
157.000000f, 145.000000f, 135.000000f, 120.000000f, 104.000000f,
88.000000f, 77.000000f, |
曲面图脚本
# -*- coding: utf-8 -*- from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pandas import DataFrame def draw(x, y, z): ‘‘‘ 采用matplolib绘制曲面图 :param x: x轴坐标数组 :param y: y轴坐标数组 :param z: z轴坐标数组 :return: ‘‘‘ X = x Y = y Z = z fig = plt.figure() ax = fig.add_subplot( 111 , projection = ‘3d‘ ) ax.plot_trisurf(X, Y, Z) plt.show() if __name__ = = ‘__main__‘ : ‘‘‘ 默认执行方式: 1.获取当前文件夹下的1.log文件 2.将数据格式化为矩阵 3.以矩阵的列索引为x坐标,行索引为y坐标,值为z坐标 4.绘制曲面图 ‘‘‘ data = {} index_origin = 0 f = open ( "1.log" ) line = f.readline() while line: data[index_origin] = line.split( ‘=‘ )[ - 1 ].replace( ‘ ‘ , ‘ ‘).split(‘ f,‘)[ 0 : - 1 ] index_origin = index_origin + 1 line = f.readline() f.close() df = DataFrame(data) df = df.T x = [] for i in range ( len (df.index)): x = x + list (df.columns) print (x) y = [] for i in range ( len (df.index)): for m in range ( 17 ): y.append(i) print (y) z = [] for i in range ( len (df.index)): z = z + df[i:i + 1 ].values.tolist()[ 0 ] z = map ( float , z) print (z) draw(x, y, z) |
【python】pandas & matplotlib 数据处理 绘制曲面图
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。