首页 > 代码库 > 图的遍历(邻居(数组+队列)实例
图的遍历(邻居(数组+队列)实例
1.#include <stdio.h>
#include <stdlib.h>
#include "MGraph.h"
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
void print_data(MVertex* v)
{
printf("%s", (char*)v);
}
int main(int argc, char *argv[])
{
MVertex* v[] = {"A", "B", "C", "D", "E", "F"};
MGraph* graph = MGraph_Create(v, 6);
MGraph_AddEdge(graph, 0, 1, 1);
MGraph_AddEdge(graph, 0, 2, 1);
MGraph_AddEdge(graph, 0, 3, 1);
MGraph_AddEdge(graph, 1, 5, 1);
MGraph_AddEdge(graph, 1, 4, 1);
MGraph_AddEdge(graph, 2, 1, 1);
MGraph_AddEdge(graph, 3, 4, 1);
MGraph_AddEdge(graph, 4, 2, 1);
//打印顶点与边的信息
MGraph_Display(graph, print_data);
MGraph_DFS(graph, 0, print_data);
MGraph_BFS(graph, 0, print_data);
MGraph_Destroy(graph);
return 0;
}
2.
#ifndef _MGRAPH_H_
#define _MGRAPH_H_
typedef void MGraph;
typedef void MVertex;
typedef void (MGraph_Printf)(MVertex*);
MGraph* MGraph_Create(MVertex** v, int n);
void MGraph_Destroy(MGraph* graph);
void MGraph_Clear(MGraph* graph);
int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w);
//清除边 返回权
int MGraph_RemoveEdge(MGraph* graph, int v1, int v2);
//获取边的权值
int MGraph_GetEdge(MGraph* graph, int v1, int v2);
//v点的度数
int MGraph_TD(MGraph* graph, int v);
//给顶点数返回
int MGraph_VertexCount(MGraph* graph);
//返回边数
int MGraph_EdgeCount(MGraph* graph);
void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc);
void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc);
void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc);
#endif
3.#include <malloc.h>
#include <stdio.h>
#include "MGraph.h"
#include "LinkQueue.h"
/* 邻居矩阵法 */
typedef struct _tag_MGraph
{
int count;
MVertex** v;
int** matrix;
} TMGraph;
//深度优先遍历算法实现
static void recursive_dfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
int i = 0;
pFunc(graph->v[v]);
visited[v] = 1;
printf(", ");
for(i=0; i<graph->count; i++)
{
if( (graph->matrix[v][i] != 0) && !visited[i] )
{
recursive_dfs(graph, i, visited, pFunc);
}
}
}
//广度优先遍历算法实现
static void bfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
LinkQueue* queue = LinkQueue_Create();
if( queue != NULL )
{
LinkQueue_Append(queue, graph->v + v);
visited[v] = 1;
while( LinkQueue_Length(queue) > 0 )
{
int i = 0;
v = (MVertex**)LinkQueue_Retrieve(queue) - graph->v;
pFunc(graph->v[v]);
printf(", ");
for(i=0; i<graph->count; i++)
{
if( (graph->matrix[v][i] != 0) && !visited[i] )
{
LinkQueue_Append(queue, graph->v + i);
visited[i] = 1;
}
}
}
}
LinkQueue_Destroy(queue);
}
//创建图
MGraph* MGraph_Create(MVertex** v, int n) // O(n)
{
TMGraph* ret = NULL;
if( (v != NULL ) && (n > 0) )
{
ret = (TMGraph*)malloc(sizeof(TMGraph));
if( ret != NULL )
{
int* p = NULL;
ret->count = n;
ret->v = (MVertex**)malloc(sizeof(MVertex*) * n);
/* 动态申请二维数组 */
ret->matrix = (int**)malloc(sizeof(int*) * n);
p = (int*)calloc(n * n, sizeof(int));
if( (ret->v != NULL) && (ret->matrix != NULL) && (p != NULL) )
{
int i = 0;
//给而二维数组遍历
for(i=0; i<n; i++)
{
ret->v[i] = v[i];
ret->matrix[i] = p + i * n;
}
}
else
{
free(p);
free(ret->matrix);
free(ret->v);
free(ret);
ret = NULL;
}
}
}
return ret;
}
void MGraph_Destroy(MGraph* graph) // O(1)
{
TMGraph* tGraph = (TMGraph*)graph;
if( tGraph != NULL )
{
free(tGraph->v);
free(tGraph->matrix[0]);
free(tGraph->matrix);
free(tGraph);
}
}
void MGraph_Clear(MGraph* graph) // O(n*n)
{
TMGraph* tGraph = (TMGraph*)graph;
if( tGraph != NULL )
{
int i = 0;
int j = 0;
for(i=0; i<tGraph->count; i++)
{
for(j=0; j<tGraph->count; j++)
{
tGraph->matrix[i][j] = 0;
}
}
}
}
int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w) // O(1)
{
TMGraph* tGraph = (TMGraph*)graph;
int ret = (tGraph != NULL);
ret = ret && (0 <= v1) && (v1 < tGraph->count);
ret = ret && (0 <= v2) && (v2 < tGraph->count);
ret = ret && (0 <= w);
if( ret )
{
tGraph->matrix[v1][v2] = w;
}
return ret;
}
int MGraph_RemoveEdge(MGraph* graph, int v1, int v2) // O(1)
{
int ret = MGraph_GetEdge(graph, v1, v2);
if( ret != 0 )
{
((TMGraph*)graph)->matrix[v1][v2] = 0;
}
return ret;
}
int MGraph_GetEdge(MGraph* graph, int v1, int v2) // O(1)
{
TMGraph* tGraph = (TMGraph*)graph;
int condition = (tGraph != NULL);
int ret = 0;
condition = condition && (0 <= v1) && (v1 < tGraph->count);
condition = condition && (0 <= v2) && (v2 < tGraph->count);
if( condition )
{
ret = tGraph->matrix[v1][v2];
}
return ret;
}
//顶点
int MGraph_TD(MGraph* graph, int v) // O(n)
{
TMGraph* tGraph = (TMGraph*)graph;
int condition = (tGraph != NULL);
int ret = 0;
condition = condition && (0 <= v) && (v < tGraph->count);
if( condition )
{
int i = 0;
for(i=0; i<tGraph->count; i++)
{
if( tGraph->matrix[v][i] != 0 )
{
ret++;
}
if( tGraph->matrix[i][v] != 0 )
{
ret++;
}
}
}
return ret;
}
//返回顶点数
int MGraph_VertexCount(MGraph* graph) // O(1)
{
TMGraph* tGraph = (TMGraph*)graph;
int ret = 0;
if( tGraph != NULL )
{
ret = tGraph->count;
}
return ret;
}
//返回边数
int MGraph_EdgeCount(MGraph* graph) // O(n*n)
{
TMGraph* tGraph = (TMGraph*)graph;
int ret = 0;
if( tGraph != NULL )
{
int i = 0;
int j = 0;
for(i=0; i<tGraph->count; i++)
{
for(j=0; j<tGraph->count; j++)
{
if( tGraph->matrix[i][j] != 0 )
{
ret++;
}
}
}
}
return ret;
}
//深度优先递归
void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{
TMGraph* tGraph = (TMGraph*)graph;
int* visited = NULL;
int condition = (tGraph != NULL);
condition = condition && (0 <= v) && (v < tGraph->count);
condition = condition && (pFunc != NULL);
condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
if( condition )
{
int i = 0;
recursive_dfs(tGraph, v, visited, pFunc);
for(i=0; i<tGraph->count; i++)
{
if( !visited[i] )
{
recursive_dfs(tGraph, i, visited, pFunc);
}
}
printf("\n");
}
free(visited);
}
//广度优先递归
void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{
TMGraph* tGraph = (TMGraph*)graph;
int* visited = NULL;
int condition = (tGraph != NULL);
condition = condition && (0 <= v) && (v < tGraph->count);
condition = condition && (pFunc != NULL);
condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
if( condition )
{
int i = 0;
bfs(tGraph, v, visited, pFunc);
for(i=0; i<tGraph->count; i++)
{
if( !visited[i] )
{
bfs(tGraph, i, visited, pFunc);
}
}
printf("\n");
}
free(visited);
}
//打印顶点与边的信息
void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc) // O(n*n)
{
TMGraph* tGraph = (TMGraph*)graph;
if( (tGraph != NULL) && (pFunc != NULL) )
{
int i = 0;
int j = 0;
//打印顶点
for(i=0; i<tGraph->count; i++)
{
printf("%d:", i);
pFunc(tGraph->v[i]);
printf(" ");
}
printf("\n");
//打印边
for(i=0; i<tGraph->count; i++)
{
for(j=0; j<tGraph->count; j++)
{
if( tGraph->matrix[i][j] != 0 )
{
printf("<");
pFunc(tGraph->v[i]);
printf(", ");
pFunc(tGraph->v[j]);
printf(", %d", tGraph->matrix[i][j]);
printf(">");
printf(" ");
}
}
}
printf("\n");
}
}
4.#ifndef _LINKQUEUE_H_
#define _LINKQUEUE_H_
typedef void LinkQueue;
LinkQueue* LinkQueue_Create();
void LinkQueue_Destroy(LinkQueue* queue);
void LinkQueue_Clear(LinkQueue* queue);
int LinkQueue_Append(LinkQueue* queue, void* item);
void* LinkQueue_Retrieve(LinkQueue* queue);
void* LinkQueue_Header(LinkQueue* queue);
int LinkQueue_Length(LinkQueue* queue);
#endif
5.#include <malloc.h>
#include <stdio.h>
#include "LinkQueue.h"
typedef struct _tag_LinkQueueNode TLinkQueueNode;
struct _tag_LinkQueueNode
{
TLinkQueueNode* next;
void* item;
};
typedef struct _tag_LinkQueue
{
TLinkQueueNode* front;
TLinkQueueNode* rear;
int length;
} TLinkQueue;
LinkQueue* LinkQueue_Create() // O(1)
{
TLinkQueue* ret = (TLinkQueue*)malloc(sizeof(TLinkQueue));
if( ret != NULL )
{
ret->front = NULL;
ret->rear = NULL;
ret->length = 0;
}
return ret;
}
void LinkQueue_Destroy(LinkQueue* queue) // O(n)
{
LinkQueue_Clear(queue);
free(queue);
}
void LinkQueue_Clear(LinkQueue* queue) // O(n)
{
while( LinkQueue_Length(queue) > 0 )
{
LinkQueue_Retrieve(queue);
}
}
int LinkQueue_Append(LinkQueue* queue, void* item) // O(1)
{
TLinkQueue* sQueue = (TLinkQueue*)queue;
TLinkQueueNode* node = (TLinkQueueNode*)malloc(sizeof(TLinkQueueNode));
int ret = (sQueue != NULL ) && (item != NULL) && (node != NULL);
if( ret )
{
node->item = item;
if( sQueue->length > 0 )
{
sQueue->rear->next = node;
sQueue->rear = node;
node->next = NULL;
}
else
{
sQueue->front = node;
sQueue->rear = node;
node->next = NULL;
}
sQueue->length++;
}
if( !ret )
{
free(node);
}
return ret;
}
void* LinkQueue_Retrieve(LinkQueue* queue) // O(1)
{
TLinkQueue* sQueue = (TLinkQueue*)queue;
TLinkQueueNode* node = NULL;
void* ret = NULL;
if( (sQueue != NULL) && (sQueue->length > 0) )
{
node = sQueue->front;
sQueue->front = node->next;
ret = node->item;
free(node);
sQueue->length--;
if( sQueue->length == 0 )
{
sQueue->front = NULL;
sQueue->rear = NULL;
}
}
return ret;
}
void* LinkQueue_Header(LinkQueue* queue) // O(1)
{
TLinkQueue* sQueue = (TLinkQueue*)queue;
void* ret = NULL;
if( (sQueue != NULL) && (sQueue->length > 0) )
{
ret = sQueue->front->item;
}
return ret;
}
int LinkQueue_Length(LinkQueue* queue) // O(1)
{
TLinkQueue* sQueue = (TLinkQueue*)queue;
int ret = -1;
if( sQueue != NULL )
{
ret = sQueue->length;
}
return ret;
}
图的遍历(邻居(数组+队列)实例