首页 > 代码库 > linux heads分析(转)

linux heads分析(转)

http://blog.chinaunix.net/uid-20451980-id-1945241.html

Linux kernel分析(一)
注:本文为Stephen Du原创,转载请注明

  一直想把自己自毕业以来学习Linux kernel的点点滴滴进行一次整理,却总是因工作繁忙而一再推迟。最近把kernel知识进行了一次全面的回顾,因此下定决心将这件事情做好。

  本文只针对ARM平台的源码分析并且并不包括bootloader的部分,也就是说只分析kernel内的“标准”代码。闲话少说,正式开始。

 

  bootloader完成基本的硬件初始化后,就开始执行arch/arm/kernel/head.S下的汇编代码,紧接着执行arch/arm/kernel/head-common.S,最后跳转到init/main.c中的start_kernel()函数。现在从arch/arm/kernel/head.S入手,看看这里做了什么。



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!(对于逻辑地址,线性地址,虚地址,物理地址,实模式,保护模式等基本概念此处不会解释)

     宏                 位置                           默认值          说明  
KERNEL_RAM_VADDR  arch/arm/kernel/head.S           0xc0008000      kernel在RAM中的的虚拟地址 
KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址 
PAGE_OFFSET      include/asm-arm/memeory.h         0xc0000000      内核空间的起始虚拟地址 
TEXT_OFFSET      arch/arm/Makefile                 0x00008000      内核相对于存储空间的偏移 
TEXTADDR         arch/arm/kernel/head.S            0xc0008000      kernel的起始虚拟地址 
PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址
KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)

    PHYS_OFFSET是RAM的物理地址,内核规定必须是2M对齐的

 25 #if (PHYS_OFFSET & 0x001fffff)

 26 #error "PHYS_OFFSET must be at an even 2MiBboundary!"

 27 #endif

 

 28 KERNEL_RAM_VADDR定义了经过映射后的内核镜像的virtual地址(link地址),PAGE_OFFSET=3G边界

    KERNEL_RAM_PADDR定义了内核镜像的物理地址。

    问题:内核镜像为什么一定要映射到高3G的地址上呢?不映射不行吗?

    答案:多进程要求多个虚拟地址空间并存,而物理上内存空间只有一个,因此必须将各个进程的虚空间进行动态映射到同一个物理空间上;另一个方面,不同机器环境下,物理内存大小不尽相同(可能太大也可能太小了),必须通过映射屏蔽这些差异以便让进程看不到差异的使用4G(32bit环境)的地址空间!内核属于一个特殊的“进程”(并不是一个进程那么简单),也必须工作于虚地址空间之下(CPU处于实模式下只能寻址有限的物理地址空间),因此需要将物理地址映射到3G(这个3G并不是一定的,可以通过内核编译选项更改,但是通常都是3G)边界的虚地址之上运行,这样基地址+偏移量的寻址思想便可以无缝的使用了!此处答案为本人个人根据现有知识的理解,可能存在错误!


 29 #define KERNEL_RAM_VADDR       (PAGE_OFFSET + TEXT_OFFSET)

 30 #define KERNEL_RAM_PADDR       (PHYS_OFFSET + TEXT_OFFSET)

    
    经过映射后的内核镜像的地址必须是1M对齐的!   

 40 #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000//The virtual addr of the kernel need to be 1M align

 41 #error KERNEL_RAM_VADDR must start at 0xXXXX8000

 42 #endif
    定义了临时page table的存放地址(虚地址)0xC000000 - 0x4000

 43 swapper_pg_dir

 44         .globl swapper_pg_dir

 45         .equ   swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000 @The temp page table base addris here(0xC000000 - 0x4000)

 46 该macro用于获取临时page table的物理地址

 47         .macro  pgtbl,rd

 48         ldr    \rd, =(KERNEL_RAM_PADDR - 0x4000)

 49         .endm

 50 XIP是片内执行的意思;针对某些存在NOR flash扩展的系统内核镜像是直接存放在XOR flash上运行的,因此镜像的地址应该是NOR flash的地址而不是RAM的地址。

 51 #ifdef CONFIG_XIP_KERNEL

 52 #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)

 53 #define KERNEL_END     _edata_loc

 54 #else

 55 #define KERNEL_START   KERNEL_RAM_VADDR

 56 #define KERNEL_END      _end

 57 #endif

第一阶段:
    这一段是bootloader进入kernel的一个入口。在进入该函数之前,整个硬件系统至少需要初始化以下的状态:
    1)MMU必须关闭(pagetable还没有建立,不能进行虚地址转实地址,CPU工作与相对寻址状态,CP指向的是物理地址)
    2)D-cache是CPU的数据cache必须处于关闭状态;I-cache是命令cache可以开也可以关闭!
    3)R0由bootloader必须清零;R1由bootloader设置为machine的number(这个是什么,可以查看内核的ARM boot文档arch/arm/tools/mach-types);R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中并将这个地址传递给kernel以便在进入kernel后使用

 77         .section".text.head", "ax"

 78         .type   stext,%function
    这里定义了由bootloader进入内核的入口stext!关键的部分来了,哈哈哈

 79 ENTRY(stext)
    由于要做一些底层的初始化,因此先将CPU切入SVC模式并关闭中断(由于中断向量表以及异常向量表并未建立,CPU无法响应中断请求!)

 80         msr    cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode

 81                                               @ and irqs disabled
    通过协处理器获取处理器ID

 82         mrc    p15, 0, r9, c0, c0              @ getprocessor id
    此处需要确定CPU的类型才能进行相应的初始化操作

 83         bl     __lookup_processor_type         @ r5=procinfor9=cpuid

 84         movs   r10, r5                        @ invalid processor (r5=0)?

 85         beq    __error_p                      @ yes, error ‘p‘
    根据内核中预置的信息,判断当前的board是哪个来确定存储器扩展以及扩展的外设有哪些

 86         bl     __lookup_machine_type           @ r5=machinfo

 87         movs   r8, r5                         @ invalid machine (r5=0)?

 88         beq    __error_a                      @ yes, error ‘a‘
    此处会去校验atag的内容

 89         bl     __vet_atags
    这里非常重要!由于CPU要开启MMU进入虚地址执行模式,因此必须先建立一个临时的page table(临时的意思是将来会这个table将会被抛弃,重新建立)

 90         bl     __create_page_tables 
    这一句十分重要也值得去细细推敲,看似没有什么用途,但是在后边开启MMU后进入虚地址空间(link地址)的部分至关重要!因为,该伪指令会将__switch_data对应的虚地址加载给r13寄存器,后面会通过将r13加载进pc(指令计数器)达到进入虚地址模式的目的!也就是说此前的所有代码工作于PIC(position independent code),并没有使用link地址,理解这一点很重要!
 99         ldr     r13, __switch_data             @ address to jump to__mmap_switched(This is not PIC addr that means:it is a absolute addr in thekernel image, another words virtual addr) after the MMU switched on and returnhere which start execute code in the virtual space!!!!!!!!!!!!!!!!!!!!!!!!!!

100                                               @ mmu has been enabled
    page table已经建立准备开启MMU

101         adr     lr,__enable_mmu                @ return(PIC) address
    执行清除CPU cache以及TLB(tablelookup buffer是MMU的高速缓冲区,提供高速虚实地址转换,原理是将以前的转换结果放在这个buffer当中,如果请求的地址在这里则不做全局搜索)的工作

102         add     pc,r10, #PROCINFO_INITFUNC     @Call the __cpu_flush to clearI-cache-D-cache TLB related registered as PROCINFO_INITFUNC     

103                                               @After __enable_mmu start to exwcute__switch_data by mov pc, r13 in __enable_mmu

104 
   多CPU的系统暂时不分析!呵呵

105 #if defined(CONFIG_SMP)

106         .type  secondary_startup, #function

107 ENTRY(secondary_startup)

108         /*

109          * Common entrypoint for secondary CPUs.

110          *

111          * Ensure that we‘rein SVC mode, and IRQs are disabled.  Lookup

112          * the processortype - there is no need to check the machine type

113          * as it has alreadybeen validated by the primary processor.

114          */

115         msr     cpsr_c,#PSR_F_BIT | PSR_I_BIT | SVC_MODE

116         mrc     p15, 0,r9, c0, c0              @ get processor id

117         bl     __lookup_processor_type

118         movs    r10, r5                       @ invalid processor?

119         moveq   r0, #‘p‘                      @ yes, error ‘p‘

120         beq     __error

121 

122         /*

123          * Use the pagetables supplied from  __cpu_up.

124          */

125         adr     r4,__secondary_data

126         ldmia   r4, {r5, r7,r13}               @ address to jump toafter

127         sub     r4, r4,r5                      @mmu has been enabled

128         ldr     r4,[r7, r4]                    @get secondary_data.pgdir

129         adr     lr,__enable_mmu                @ returnaddress

130         add     pc,r10, #PROCINFO_INITFUNC     @ initialise processor

131                                               @ (return control reg)

132 

133         /*

134          * r6  =&secondary_data

135          */

136 ENTRY(__secondary_switched)

137         ldr     sp,[r7, #4]                    @get secondary_data.stack

138         mov     fp, #0

139         b      secondary_start_kernel

140 

141         .type  __secondary_data, %object

142 __secondary_data:

143         .long   .

144         .long  secondary_data

145         .long  __secondary_switched

146 #endif /* defined(CONFIG_SMP) */

147 

   开启MMU的函数

155         .type  __enable_mmu, %function

156 __enable_mmu:

157 #ifdef CONFIG_ALIGNMENT_TRAP

158         orr     r0, r0,#CR_A

159 #else

160         bic     r0, r0,#CR_A

161 #endif

162 #ifdef CONFIG_CPU_DCACHE_DISABLE

163         bic     r0, r0,#CR_C

164 #endif

165 #ifdef CONFIG_CPU_BPREDICT_DISABLE

166         bic     r0, r0,#CR_Z

167 #endif

168 #ifdef CONFIG_CPU_ICACHE_DISABLE

169         bic     r0, r0,#CR_I

170 #endif
    此处MMU相关的设置,本人没有细究,有情趣的可以研究研究

171         mov     r5,#(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \

172                      domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \

173                      domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \

174                      domain_val(DOMAIN_IO, DOMAIN_CLIENT))

175         mcr     p15, 0,r5, c3, c0, 0           @ load domain access register

176         mcr     p15, 0,r4, c2, c0, 0           @ load page table pointer

177         b      __turn_mmu_on

    这里真正的开启了MMU并从PIC进入virual地址空间运行!!
190         .align  5

191         .type  __turn_mmu_on, %function

192 __turn_mmu_on:
    执行延时操作(原因在于协处理器相关操作不能立即生效,需要几个ARM的指令周期后才能工作!)

193         mov     r0, r0                        @delay for the reason of the ARM execute flow!

194         mcr     p15, 0,r0, c1, c0, 0           @ write control reg

195         mrc     p15, 0,r3, c0, c0, 0           @ read id reg

196         mov     r3, r3                        @delay!!!!!for the reason of ARM execute flow!

197         mov     r3, r3                        @delay!!!!!
   该行代码之前pc方的是物理地址,此后pc存放的将是虚地址,也就是phys+0xc000000

198         mov     pc, r13                       @jump to the __switch_data; r3 contains the virtual addr of__switch_data, because the MMU is on, so this     virtual addr can betranslated into the physical addr automatically!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    以后的代码在虚地址空间运行!!!!!!!!!!!!!!!!!!!


   该函数在PHYS_OFFSET+0x08000-0x4000处创建临时page table

215         .type  __create_page_tables, %function

216 __create_page_tables:

217         pgtbl   r4                            @ Get page table base address r4=0x4000 16K addr

   清零内存

222         mov     r0, r4 @Back up base page table addr

223         mov     r3, #0

224         add     r6, r0,#0x4000 @ r6 contains the end of page table addr

225 /***Clear the 16K page table memory to 0*/

226 1:      str     r3, [r0], #4

227         str     r3,[r0], #4

228         str     r3,[r0], #4

229         str     r3,[r0], #4

230         teq     r0, r6

231         bne     1b

232 /**End*/
   将内核镜像中的MMU flag数值取出,准备设置page table

233         ldr     r7,[r10, #PROCINFO_MM_MMUFLAGS] @ get the mm_mmuflags

   此处,为当前物理地址起的1M空间建立映射(1M源于ARM的MMU支持2级page,第一级支持1M的page或者指向2级的entry;由于内核镜像的特殊性,它的segments被放在一级page table的1M page内而不是存放在后面将要讲述的4kpage内)
   

   
   该语句比较重要,pc此处指向物理地址,右移20次则得到当前物理地址的1M计数(再左移20位就是segment的地址!,相当于清零低20bit)

241         mov     r6, pc,lsr #20                 @ start ofkernel section r6=pc>>20 contains section addr and the virt addr == physaddr
   根据上句得出的段计数左移20位算出段地址,并将将低20bit设置成MMU的flag,得到一个map entry!

242         orr     r3, r7,r6, lsl #20             @ flags + kernel base
   将map entry数值写回page table相应的位置,以便MMU查表转换的时候使用!这里有一点值得注意:这里,映射前后的地址空间实际上上一样的,因为pc的虚地址跟物理地址重合!r6(可以理解r6的数值为page table的index)之所以左移2bit是由于每个page table的entry占4个字节,然后page entry addr=r4(基地址)+index*4

243         str     r3,[r4, r6, lsl #2]            @ identitymapping;Reason see r6=pc>>20

244                                               @ r6 contains the index offset in thepage table so multiple 4 get the address of the L1 entry

245         /**Here we need an id todecide which page entry to write the r3, so we apply multi 4 to get the id*/
   

   这里为内核镜像建立映射(映射的本质是设置pagetable entry,让MMU知道如何将虚地址转换成物理地址);非XIP的时候KERNEL_RAM_VADDR=KERNEL_START
251         add    r0, r4,  #(KERNEL_START & 0xff000000) >> 18//Should firstly right shift 20bits and for the reason of page entry is 4 bytessize so left s    hift 2 then is 18;What is 0xff000000?while not0xfff00000? Answer is in the next code 0x0f00000+0xff000000=0xfff0000!

252         str     r3,[r0, #(KERNEL_START & 0x00f00000) >> 18]! //Attention!r3‘s contentremains as the kernel section map, so 

253                                                              //The two virtual addr corresponds to the same phys addr!

254         ldr     r6,=(KERNEL_END - 1)

255         add     r0, r0,#4      //Point to the next L1 entry!

256         add     r6, r4,r6, lsr #18 //Caculate the end of L1 entry

257 1:      cmp     r0, r6 //Reaching the end of entry?

258         add     r3, r3,#1 << 20 //add the segment addr for 1

259         strls   r3, [r0], #4

260         bls     1b

261 

262 #ifdef CONFIG_XIP_KERNEL

263         /*

264          * Map some ram tocover our .data and .bss areas.

265          */

266         orr     r3, r7,#(KERNEL_RAM_PADDR & 0xff000000)

267         .if    (KERNEL_RAM_PADDR & 0x00f00000)

268         orr     r3, r3,#(KERNEL_RAM_PADDR & 0x00f00000)

269         .endif

270         add     r0, r4, #(KERNEL_RAM_VADDR & 0xff000000) >> 18

271         str     r3,[r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!

272         ldr     r6,=(_end - 1)

273         add     r0, r0,#4

274         add     r6, r4,r6, lsr #18

275 1:      cmp     r0, r6

276         add     r3, r3,#1 << 20

277         strls   r3, [r0], #4

278         bls     1b

279 #endif
   由于最低1M存放了bootloader传递给kernel的一些参数,因此需要为它建立map这样开启MMU后就可以访问这些参数了。

284         add     r0, r4,#PAGE_OFFSET >> 18 @The base virtual addr!

285         orr     r6, r7,#(PHYS_OFFSET & 0xff000000)

286         .if    (PHYS_OFFSET & 0x00f00000)

287         orr     r6, r6,#(PHYS_OFFSET & 0x00f00000)

288         .endif

289         str     r6,[r0]
  建好页表返回

332         mov     pc, lr

333         .ltorg

334 

335 #include "head-common.S"

------------------------------------------------------- 

如下为 head.S内容,我做了简单注释

/*head.s是linux解压后的运行的第一个程序。为保持通用性,与机器相关的代码都应有bootloader完成。此程序主要完成页表初始化,开启MMU。 以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!     宏                 位置                           默认值          说明  KERNEL_RAM_VADDR  arch/arm/kernel/head.S             0xc0008000      kernel在RAM中的的虚拟地址 KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址 PAGE_OFFSET      include/asm-arm/memeory.h           0xc0000000      内核空间的起始虚拟地址 TEXT_OFFSET      arch/arm/Makefile                   0x00008000      内核相对于存储空间的偏移 TEXTADDR         arch/arm/kernel/head.S              0xc0008000      kernel的起始虚拟地址 PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,                                                                     但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)*//* *  linux/arch/arm/kernel/head.S * *  Copyright (C) 1994-2002 Russell King *  Copyright (c) 2003 ARM Limited *  All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * *  Kernel startup code for all 32-bit CPUs */#include <linux/linkage.h>#include <linux/init.h>#include <asm/assembler.h>#include <asm/domain.h>#include <asm/ptrace.h>#include <asm/asm-offsets.h>#include <asm/memory.h>#include <asm/thread_info.h>#include <asm/system.h>#include <asm/pgtable.h>#ifdef CONFIG_DEBUG_LL#include <mach/debug-macro.S>#endif/*swapper_pg_dir是初始(第一个)页表的虚拟地址,放在KERNEL_RAM_VADDR下的16K空间。KERNEL_RAM_VADDR必须0x8000对齐,kernel在ram中的虚拟地址,一般为0xc0008000。*//* * swapper_pg_dir is the virtual address of the initial page table. * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect * the least significant 16 bits to be 0x8000, but we could probably * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000. */#define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000#error KERNEL_RAM_VADDR must start at 0xXXXX8000#endif#define PG_DIR_SIZE    0x4000#define PMD_ORDER    2    .globl    swapper_pg_dir    .equ    swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE    .macro    pgtbl, rd, phys    add    \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE    .endm#ifdef CONFIG_XIP_KERNEL#define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)#define KERNEL_END    _edata_loc#else#define KERNEL_START    KERNEL_RAM_VADDR#define KERNEL_END    _end#endif/*内核运行条件:关闭MMU,关闭D-cache,I-cache无关,r0 = 0 r1 = machine nrr2 = atags or dtb指针 R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中并将这个地址传递给kernel以便在进入kernel后使用*//* * Kernel startup entry point. * --------------------------- * * This is normally called from the decompressor code.  The requirements * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0, * r1 = machine nr, r2 = atags or dtb pointer. * * This code is mostly position independent, so if you link the kernel at * 0xc0008000, you call this at __pa(0xc0008000). * * See linux/arch/arm/tools/mach-types for the complete list of machine * numbers for r1. * * We‘re trying to keep crap to a minimum; DO NOT add any machine specific * crap here - that‘s what the boot loader (or in extreme, well justified * circumstances, zImage) is for. */    .arm    __HEADENTRY(stext) THUMB(    adr    r9, BSYM(1f)    )    @ Kernel is always entered in ARM. THUMB(    bx    r9        )    @ If this is a Thumb-2 kernel, THUMB(    .thumb            )    @ switch to Thumb now. THUMB(1:            )    setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode                        @ and irqs disabled    mrc    p15, 0, r9, c0, c0        @ get processor id    bl    __lookup_processor_type        @ r5=procinfo r9=cpuid    movs    r10, r5                @ invalid processor (r5=0)? THUMB( it    eq )        @ force fixup-able long branch encoding    beq    __error_p            @ yes, error p#ifndef CONFIG_XIP_KERNEL    adr    r3, 2f    ldmia    r3, {r4, r8}    sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)    add    r8, r8, r4            @ PHYS_OFFSET#else    ldr    r8, =PHYS_OFFSET        @ always constant in this case#endif    /*     * r1 = machine no, r2 = atags or dtb,     * r8 = phys_offset, r9 = cpuid, r10 = procinfo     */    bl    __vet_atags#ifdef CONFIG_SMP_ON_UP    bl    __fixup_smp#endif#ifdef CONFIG_ARM_PATCH_PHYS_VIRT    bl    __fixup_pv_table#endif    bl    __create_page_tables    /*     * The following calls CPU specific code in a position independent     * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of     * xxx_proc_info structure selected by __lookup_processor_type     * above.  On return, the CPU will be ready for the MMU to be     * turned on, and r0 will hold the CPU control register value.     */    ldr    r13, =__mmap_switched        @ address to jump to after                        @ mmu has been enabled    adr    lr, BSYM(1f)            @ return (PIC) address    mov    r8, r4                @ set TTBR1 to swapper_pg_dir ARM(    add    pc, r10, #PROCINFO_INITFUNC    ) THUMB(    add    r12, r10, #PROCINFO_INITFUNC    ) THUMB(    mov    pc, r12                )1:    b    __enable_mmuENDPROC(stext)    .ltorg#ifndef CONFIG_XIP_KERNEL2:    .long    .    .long    PAGE_OFFSET#endif/************************************************************************//*建立初始页表。仅仅建立能使内核运行的最小量页,映射在内核区。*//* * Setup the initial page tables.  We only setup the barest * amount which are required to get the kernel running, which * generally means mapping in the kernel code. * * r8 = phys_offset, r9 = cpuid, r10 = procinfo * * Returns: *  r0, r3, r5-r7 corrupted *  r4 = physical page table address */__create_page_tables:    pgtbl    r4, r8                @ page table address    /*     * Clear the swapper page table     */    mov    r0, r4    mov    r3, #0    add    r6, r0, #PG_DIR_SIZE1:    str    r3, [r0], #4    str    r3, [r0], #4    str    r3, [r0], #4    str    r3, [r0], #4    teq    r0, r6    bne    1b    ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags    /*     * Create identity mapping to cater for __enable_mmu.     * This identity mapping will be removed by paging_init().     */    adr    r0, __enable_mmu_loc    ldmia    r0, {r3, r5, r6}    sub    r0, r0, r3            @ virt->phys offset    add    r5, r5, r0            @ phys __enable_mmu    add    r6, r6, r0            @ phys __enable_mmu_end    mov    r5, r5, lsr #SECTION_SHIFT    mov    r6, r6, lsr #SECTION_SHIFT1:    orr    r3, r7, r5, lsl #SECTION_SHIFT    @ flags + kernel base    str    r3, [r4, r5, lsl #PMD_ORDER]    @ identity mapping    cmp    r5, r6    addlo    r5, r5, #1            @ next section    blo    1b    /*     * Now setup the pagetables for our kernel direct     * mapped region.     */    mov    r3, pc    mov    r3, r3, lsr #SECTION_SHIFT    orr    r3, r7, r3, lsl #SECTION_SHIFT    add    r0, r4,  #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)    str    r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]!    ldr    r6, =(KERNEL_END - 1)    add    r0, r0, #1 << PMD_ORDER    add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)1:    cmp    r0, r6    add    r3, r3, #1 << SECTION_SHIFT    strls    r3, [r0], #1 << PMD_ORDER    bls    1b#ifdef CONFIG_XIP_KERNEL    /*     * Map some ram to cover our .data and .bss areas.     */    add    r3, r8, #TEXT_OFFSET    orr    r3, r3, r7    add    r0, r4,  #(KERNEL_RAM_VADDR & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)    str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> (SECTION_SHIFT - PMD_ORDER)]!    ldr    r6, =(_end - 1)    add    r0, r0, #4    add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)1:    cmp    r0, r6    add    r3, r3, #1 << 20    strls    r3, [r0], #4    bls    1b#endif/*boot 参数地址在r2,或者ram的开始1MB空间(加入参数地址未指定)*/    /*     * Then map boot params address in r2 or     * the first 1MB of ram if boot params address is not specified.     */    mov    r0, r2, lsr #SECTION_SHIFT    movs    r0, r0, lsl #SECTION_SHIFT    moveq    r0, r8    sub    r3, r0, r8    add    r3, r3, #PAGE_OFFSET    add    r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER)    orr    r6, r7, r0    str    r6, [r3]#ifdef CONFIG_DEBUG_LL#ifndef CONFIG_DEBUG_ICEDCC    /*     * Map in IO space for serial debugging.     * This allows debug messages to be output     * via a serial console before paging_init.     */    addruart r7, r3, r0    mov    r3, r3, lsr #SECTION_SHIFT    mov    r3, r3, lsl #PMD_ORDER    add    r0, r4, r3    rsb    r3, r3, #0x4000            @ PTRS_PER_PGD*sizeof(long)    cmp    r3, #0x0800            @ limit to 512MB    movhi    r3, #0x0800    add    r6, r0, r3    mov    r3, r7, lsr #SECTION_SHIFT    ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags    orr    r3, r7, r3, lsl #SECTION_SHIFT1:    str    r3, [r0], #4    add    r3, r3, #1 << SECTION_SHIFT    cmp    r0, r6    blo    1b#else /* CONFIG_DEBUG_ICEDCC */    /* we don‘t need any serial debugging mappings for ICEDCC */    ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags#endif /* !CONFIG_DEBUG_ICEDCC */#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)    /*     * If we‘re using the NetWinder or CATS, we also need to map     * in the 16550-type serial port for the debug messages     */    add    r0, r4, #0xff000000 >> (SECTION_SHIFT - PMD_ORDER)    orr    r3, r7, #0x7c000000    str    r3, [r0]#endif#ifdef CONFIG_ARCH_RPC    /*     * Map in screen at 0x02000000 & SCREEN2_BASE     * Similar reasons here - for debug.  This is     * only for Acorn RiscPC architectures.     */    add    r0, r4, #0x02000000 >> (SECTION_SHIFT - PMD_ORDER)    orr    r3, r7, #0x02000000    str    r3, [r0]    add    r0, r4, #0xd8000000 >> (SECTION_SHIFT - PMD_ORDER)    str    r3, [r0]#endif#endif    mov    pc, lrENDPROC(__create_page_tables)    .ltorg    .align__enable_mmu_loc:    .long    .    .long    __enable_mmu    .long    __enable_mmu_end#if defined(CONFIG_SMP)    __CPUINITENTRY(secondary_startup)    /*     * Common entry point for secondary CPUs.     *     * Ensure that we‘re in SVC mode, and IRQs are disabled.  Lookup     * the processor type - there is no need to check the machine type     * as it has already been validated by the primary processor.     */    setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9    mrc    p15, 0, r9, c0, c0        @ get processor id    bl    __lookup_processor_type    movs    r10, r5                @ invalid processor?    moveq    r0, #p            @ yes, error p THUMB( it    eq )        @ force fixup-able long branch encoding    beq    __error_p    /*     * Use the page tables supplied from  __cpu_up.     */    adr    r4, __secondary_data    ldmia    r4, {r5, r7, r12}        @ address to jump to after    sub    lr, r4, r5            @ mmu has been enabled    ldr    r4, [r7, lr]            @ get secondary_data.pgdir    add    r7, r7, #4    ldr    r8, [r7, lr]            @ get secondary_data.swapper_pg_dir    adr    lr, BSYM(__enable_mmu)        @ return address    mov    r13, r12            @ __secondary_switched address ARM(    add    pc, r10, #PROCINFO_INITFUNC    ) @ initialise processor                          @ (return control reg) THUMB(    add    r12, r10, #PROCINFO_INITFUNC    ) THUMB(    mov    pc, r12                )ENDPROC(secondary_startup)    /*     * r6  = &secondary_data     */ENTRY(__secondary_switched)    ldr    sp, [r7, #4]            @ get secondary_data.stack    mov    fp, #0    b    secondary_start_kernelENDPROC(__secondary_switched)    .align    .type    __secondary_data, %object__secondary_data:    .long    .    .long    secondary_data    .long    __secondary_switched#endif /* defined(CONFIG_SMP) *//* * Setup common bits before finally enabling the MMU.  Essentially * this is just loading the page table pointer and domain access * registers. * *  r0  = cp#15 control register *  r1  = machine ID *  r2  = atags or dtb pointer *  r4  = page table pointer *  r9  = processor ID *  r13 = *virtual* address to jump to upon completion */__enable_mmu:#if defined(CONFIG_ALIGNMENT_TRAP) && __LINUX_ARM_ARCH__ < 6    orr    r0, r0, #CR_A#else    bic    r0, r0, #CR_A#endif#ifdef CONFIG_CPU_DCACHE_DISABLE    bic    r0, r0, #CR_C#endif#ifdef CONFIG_CPU_BPREDICT_DISABLE    bic    r0, r0, #CR_Z#endif#ifdef CONFIG_CPU_ICACHE_DISABLE    bic    r0, r0, #CR_I#endif    mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) |               domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) |               domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) |               domain_val(DOMAIN_IO, DOMAIN_CLIENT))    mcr    p15, 0, r5, c3, c0, 0        @ load domain access register    mcr    p15, 0, r4, c2, c0, 0        @ load page table pointer    b    __turn_mmu_onENDPROC(__enable_mmu)/* * Enable the MMU.  This completely changes the structure of the visible * memory space.  You will not be able to trace execution through this. * If you have an enquiry about this, *please* check the linux-arm-kernel * mailing list archives BEFORE sending another post to the list. * *  r0  = cp#15 control register *  r1  = machine ID *  r2  = atags or dtb pointer *  r9  = processor ID *  r13 = *virtual* address to jump to upon completion * * other registers depend on the function called upon completion */    .align    5__turn_mmu_on:    mov    r0, r0    mcr    p15, 0, r0, c1, c0, 0        @ write control reg    mrc    p15, 0, r3, c0, c0, 0        @ read id reg    mov    r3, r3    mov    r3, r13    mov    pc, r3__enable_mmu_end:ENDPROC(__turn_mmu_on)#ifdef CONFIG_SMP_ON_UP    __INIT__fixup_smp:    and    r3, r9, #0x000f0000    @ architecture version    teq    r3, #0x000f0000        @ CPU ID supported?    bne    __fixup_smp_on_up    @ no, assume UP    bic    r3, r9, #0x00ff0000    bic    r3, r3, #0x0000000f    @ mask 0xff00fff0    mov    r4, #0x41000000    orr    r4, r4, #0x0000b000    orr    r4, r4, #0x00000020    @ val 0x4100b020    teq    r3, r4            @ ARM 11MPCore?    moveq    pc, lr            @ yes, assume SMP    mrc    p15, 0, r0, c0, c0, 5    @ read MPIDR    and    r0, r0, #0xc0000000    @ multiprocessing extensions and    teq    r0, #0x80000000        @ not part of a uniprocessor system?    moveq    pc, lr            @ yes, assume SMP__fixup_smp_on_up:    adr    r0, 1f    ldmia    r0, {r3 - r5}    sub    r3, r0, r3    add    r4, r4, r3    add    r5, r5, r3    b    __do_fixup_smp_on_upENDPROC(__fixup_smp)    .align1:    .word    .    .word    __smpalt_begin    .word    __smpalt_end    .pushsection .data    .globl    smp_on_upsmp_on_up:    ALT_SMP(.long    1)    ALT_UP(.long    0)    .popsection#endif    .text__do_fixup_smp_on_up:    cmp    r4, r5    movhs    pc, lr    ldmia    r4!, {r0, r6} ARM(    str    r6, [r0, r3]    ) THUMB(    add    r0, r0, r3    )#ifdef __ARMEB__ THUMB(    mov    r6, r6, ror #16    )    @ Convert word order for big-endian.#endif THUMB(    strh    r6, [r0], #2    )    @ For Thumb-2, store as two halfwords THUMB(    mov    r6, r6, lsr #16    )    @ to be robust against misaligned r3. THUMB(    strh    r6, [r0]    )    b    __do_fixup_smp_on_upENDPROC(__do_fixup_smp_on_up)ENTRY(fixup_smp)    stmfd    sp!, {r4 - r6, lr}    mov    r4, r0    add    r5, r0, r1    mov    r3, #0    bl    __do_fixup_smp_on_up    ldmfd    sp!, {r4 - r6, pc}ENDPROC(fixup_smp)#ifdef CONFIG_ARM_PATCH_PHYS_VIRT/* __fixup_pv_table - patch the stub instructions with the delta between * PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and * can be expressed by an immediate shifter operand. The stub instruction * has a form of ‘(add|sub) rd, rn, #imm‘. */    __HEAD__fixup_pv_table:    adr    r0, 1f    ldmia    r0, {r3-r5, r7}    sub    r3, r0, r3    @ PHYS_OFFSET - PAGE_OFFSET    add    r4, r4, r3    @ adjust table start address    add    r5, r5, r3    @ adjust table end address    add    r7, r7, r3    @ adjust __pv_phys_offset address    str    r8, [r7]    @ save computed PHYS_OFFSET to __pv_phys_offset    mov    r6, r3, lsr #24    @ constant for add/sub instructions    teq    r3, r6, lsl #24 @ must be 16MiB alignedTHUMB(    it    ne        @ cross section branch )    bne    __error    str    r6, [r7, #4]    @ save to __pv_offset    b    __fixup_a_pv_tableENDPROC(__fixup_pv_table)    .align1:    .long    .    .long    __pv_table_begin    .long    __pv_table_end2:    .long    __pv_phys_offset    .text__fixup_a_pv_table:#ifdef CONFIG_THUMB2_KERNEL    lsls    r6, #24    beq    2f    clz    r7, r6    lsr    r6, #24    lsl    r6, r7    bic    r6, #0x0080    lsrs    r7, #1    orrcs    r6, #0x0080    orr    r6, r6, r7, lsl #12    orr    r6, #0x4000    b    2f1:    add     r7, r3    ldrh    ip, [r7, #2]    and    ip, 0x8f00    orr    ip, r6    @ mask in offset bits 31-24    strh    ip, [r7, #2]2:    cmp    r4, r5    ldrcc    r7, [r4], #4    @ use branch for delay slot    bcc    1b    bx    lr#else    b    2f1:    ldr    ip, [r7, r3]    bic    ip, ip, #0x000000ff    orr    ip, ip, r6    @ mask in offset bits 31-24    str    ip, [r7, r3]2:    cmp    r4, r5    ldrcc    r7, [r4], #4    @ use branch for delay slot    bcc    1b    mov    pc, lr#endifENDPROC(__fixup_a_pv_table)ENTRY(fixup_pv_table)    stmfd    sp!, {r4 - r7, lr}    ldr    r2, 2f            @ get address of __pv_phys_offset    mov    r3, #0            @ no offset    mov    r4, r0            @ r0 = table start    add    r5, r0, r1        @ r1 = table size    ldr    r6, [r2, #4]        @ get __pv_offset    bl    __fixup_a_pv_table    ldmfd    sp!, {r4 - r7, pc}ENDPROC(fixup_pv_table)    .align2:    .long    __pv_phys_offset    .data    .globl    __pv_phys_offset    .type    __pv_phys_offset, %object__pv_phys_offset:    .long    0    .size    __pv_phys_offset, . - __pv_phys_offset__pv_offset:    .long    0#endif#include "head-common.S"

 

linux heads分析(转)